Atjaunināt sīkdatņu piekrišanu

E-grāmata: Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials

(University of California, San Diego), (National Tsing Hua University, Taiwan)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 31-Jul-2014
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139949033
  • Formāts - EPUB+DRM
  • Cena: 118,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 31-Jul-2014
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139949033

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Taking a unique materials science approach, this text introduces students to the basic concepts and applications of materials and biomedical engineering and prepares them for the challenges of the new interdisciplinary field of biomaterials science. Split into three sections - Basic Biology Principles, Biological Materials, and Bioinspired Materials and Biomimetics - it presents biological materials along with the structural and functional classification of biopolymers, bioelastomers, foams, and ceramiccomposites. More traditional biomimetic designs such as Velcro are then discussed in conjunction with new developments that mimic the structure of biological materials at the molecular level, mixing nanoscale with biomolecular designs. Bioinspired designof materials and structures is also covered. Focused presentations of biomaterials are presented throughout the text in succinct boxes, emphasising biomedical applications, whilst the basic principles of biology are explained, so no prior knowledge is required. The topics are supported by approximately 500 illustrations, solved problems, and end-of-chapter exercises"--

Taking a unique materials science approach, this text introduces students to the basic concepts and applications of materials and biomedical engineering and prepares them for the challenges of the new interdisciplinary field of biomaterials science.

Recenzijas

'The union of the physical and biological sciences is in many respects one of the most exciting yet challenging aspects of scientific endeavor today. Nowhere is this more in evidence than in the area of biological materials science and engineering where many materials scientists struggle with the complex puzzle of biological form and function while biologists in turn have to deal with the invariably highly quantitative nature of the physical sciences and engineering. With this book, Meyers and Chen have delivered a true tour de force which takes the reader in clear and precise text from cells to virus-produced Li-ion batteries. This book is a must read for undergraduates, graduates and researchers alike in the rapidly expanding fields of biological, bioinspired and biomaterials science.' Robert Ritchie, Lawrence Berkeley National Laboratory

Papildus informācija

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.
Preface xv
List of Boxes xviii
1 Evolution of materials science and engineering: from natural to bioinspired materials
1(16)
1.1 Early developments
1(2)
1.2 Evolution of materials science and engineering
3(5)
1.2.1 Traditional metallurgy
3(3)
1.2.2 The structure-properties-performance triangle
6(1)
1.2.3 Functional materials
7(1)
1.3 Biological and bioinspired materials
8(4)
Summary
12(1)
Exercises
13(4)
Part I Basic biology principles 17(138)
2 Self-assembly, hierarchy, and evolution
19(34)
Introduction
19(1)
2.1 Hierarchical structures
19(10)
2.2 Multifunctionality
29(1)
2.3 Self-organization and self-assembly
30(1)
2.4 Adaptation
31(2)
2.5 Evolution and convergence
33(3)
2.6 Ashby-Wegst performance plots
36(4)
2.7 Viscoelasticity
40(5)
2.8 Weibull distribution of failure strengths
45(2)
Summary
47(4)
Exercises
51(2)
3 Basic building blocks: biopolymers
53(49)
Introduction
53(1)
3.1 Water
54(1)
3.2 Nucleotides and nucleic acid
55(2)
3.3 Amino acids, peptides, and proteins
57(32)
3.3.1 Amino acids and peptides
57(9)
3.3.2 Overview of protein structure
66(3)
3.3.3 Collagen
69(12)
3.3.4 Keratin
81(2)
3.3.5 Elastin
83(1)
3.3.6 Actin and myosin
84(4)
3.3.7 Resilin and abductin
88(1)
3.3.8 Other structural proteins
88(1)
3.4 Polysaccharides
89(6)
3.4.1 Chitin and chitosan
90(3)
3.4.2 Cellulose
93(2)
3.5 Lignin
95(1)
3.6 Lipids
95(1)
3.7 Formation of biopolymers
95(2)
3.7.1 Collagen
95(2)
3.7.2 Keratin
97(1)
3.7.3 Chitin
97(1)
Summary
97(2)
Exercises
99(3)
4 Cells
102(27)
Introduction
102(1)
4.1 Structure
103(7)
4.1.1 Cytoskeleton
107(3)
4.1.2 Multifunctionality
110(1)
4.2 Mechanical properties
110(1)
4.3 Mechanical testing
110(7)
4.4 Cell motility, locomotion, and adhesion
117(2)
4.5 Flexure and compressive resistance of hollow and solid cylinders: application to microtubules
119(6)
4.6 From cells to organisms
125(1)
Summary
126(1)
Exercises
127(2)
5 Biomineralization
129(26)
Introduction
129(1)
5.1 Nucleation
129(3)
5.2 Growth and morphology of crystals
132(4)
5.3 Structures
136(8)
5.4 Origins and structures
144(7)
Summary
151(1)
Exercises
152(3)
Part II Biological materials 155(342)
6 Silicate- and calcium-carbonate-based composites
157(66)
Introduction
157(1)
6.1 Diatoms, sea sponges, and other silicate-based materials
157(7)
6.1.1 Diatoms and radiolarians
157(3)
6.1.2 Sponge spicules
160(4)
6.2 Mollusc shells
164(47)
6.2.1 Classification and structures
164(4)
6.2.2 Nacreous shells
168(28)
6.2.3 Conch shell
196(6)
6.2.4 Giant clam
202(9)
6.3 Teeth of marine organisms: chiton radula and marine worm
211(2)
6.4 Sea urchin
213(1)
6.5 Shrimp hammer
213(3)
6.6 Egg shell
216(1)
6.7 Fish otoliths
217(1)
6.8 Multi-scale effects
217(1)
Summary
218(2)
Exercises
220(3)
7 Calcium-phosphate-based composites
223(69)
Introduction
223(1)
7.1 Bone
223(32)
7.1.1 Structure
224(2)
7.1.2 Bone cells and remodeling
226(1)
7.1.3 Elastic properties
226(7)
7.1.4 Strength
233(6)
7.1.5 Fracture and fracture toughness of bone
239(15)
7.1.6 Fatigue
254(1)
7.2 Antler
255(7)
7.2.1 Structure and functionality
255(2)
7.2.2 Quasistatic and dynamic mechanical behavior
257(2)
7.2.3 Exceptional fracture resistance
259(3)
7.3 Teeth and tusks
262(12)
7.3.1 Structure and properties
262(1)
7.3.2 Fracture toughness and toughening mechanisms
263(11)
7.4 Other mineralized biological materials
274(9)
7.4.1 Armadillo
274(4)
7.4.2 Testudine
278(2)
7.4.3 Crocodilia
280(3)
Summary
283(2)
Exercises
285(7)
8 Biological polymers and polymer composites
292(63)
Introduction
292(1)
8.1 Tendons and ligaments
293(3)
8.2 Spider and other silks
296(8)
8.2.1 Adhesive in spider web
301(1)
8.2.2 Molecular dynamics predictions
301(3)
8.3 Arthropod exoskeletons
304(14)
8.3.1 Crustaceans
305(7)
8.3.2 Hexapods
312(6)
8.4 Keratin-based materials
318(14)
8.4.1 Hoof
319(4)
8.4.2 Horn
323(5)
8.4.3 Beak
328(4)
8.4.4 Pangolin scales
332(1)
8.5 Fish scales
332(7)
8.6 Squid beak
339(3)
8.7 Invertebrate jaws and mandibles
342(4)
8.8 Other natural fibers
346(2)
Summary
348(5)
Exercises
353(2)
9 Biological elastomers
355(42)
Introduction
355(1)
9.1 Constitutive equations for soft biopolymers
355(7)
9.1.1 Worm-like chain model
355(3)
9.1.2 Power equation
358(1)
9.1.3 Flory-Treloar equations
359(1)
9.1.4 Mooney-Rivlin equation
359(1)
9.1.5 Ogden equation
359(2)
9.1.6 Fung equation
361(1)
9.1.7 Molecular dynamics calculations
362(1)
9.2 Skin
362(13)
9.3 Muscle
375(3)
9.4 Blood vessels
378(6)
9.4.1 Nonlinear elasticity
381(2)
9.4.2 Residual stresses
383(1)
9.5 Mussel byssus
384(3)
9.6 Whelk eggs
387(3)
9.7 Extreme keratin: hagfish slime and wool
390(2)
Summary
392(3)
Exercises
395(2)
10 Biological foams (cellular solids)
397(55)
Introduction
397(1)
10.1 Lightweight structures for bending and torsion resistance
397(3)
10.2 Basic equations for foams
400(10)
10.2.1 Elastic region
404(1)
10.2.2 Plastic plateau
405(2)
10.2.3 Densification
407(3)
10.3 Wood
410(7)
10.4 Bird bones
417(3)
10.5 Bird beaks
420(15)
10.5.1 Toucan and hornbill beaks
420(5)
10.5.2 Modeling of interior foam (Gibson-Ashby constitutive equations)
425(10)
10.6 Feather
435(8)
10.7 Cuttlefish bone
443(3)
Summary
446(3)
Exercises
449(3)
11 Functional biological materials
452(45)
Introduction
452(1)
11.1 Adhesion and attachment
452(3)
11.2 Gecko feet
455(6)
11.3 Beetles
461(1)
11.4 Tree frog toe pad
461(4)
11.5 Abalone foot: underwater adhesion
465(7)
11.6 Surfaces and surface properties
472(6)
11.6.1 Multifunctional surface structures of plants
472(5)
11.6.2 Shark skin
477(1)
11.7 Optical properties
478(8)
11.7.1 Structural colors
478(1)
11.7.2 Photonic crystal arrays
479(2)
11.7.3 Thin film interference
481(1)
11.7.4 Chameleon
482(2)
11.7.5 Echinoderms
484(2)
11.8 Cutting: sharp biological materials
486(7)
11.8.1 Plants
486(1)
11.8.2 Fish teeth
487(4)
11.8.3 Rodent incisors
491(1)
11.8.4 Wood wasp ovipositor
492(1)
Summary
493(2)
Exercises
495(2)
Part III Bioinspired materials and biomimetics 497(123)
12 Bioinspired materials: traditional biomimetics
499(61)
Introduction
499(2)
12.1 Structural and functional applications
501(46)
12.1.1 VELCRO®
501(3)
12.1.2 Aerospace materials
504(2)
12.1.3 Building designs
506(2)
12.1.4 Fiber optics and microlenses
508(2)
12.1.5 Manufacturing
510(1)
12.1.6 Water collection
511(1)
12.1.7 Gecko feet
512(2)
12.1.8 Nacre-inspired structures
514(10)
12.1.9 Marine adhesives: mussel byssal attachment
524(3)
12.1.10 Sonar-enabled cane inspired by bats
527(1)
12.1.11 Butterfly wings
527(4)
12.1.12 Origami structures
531(1)
12.1.13 Self-healing composites
532(3)
12.1.14 Sheep-horn-inspired composites
535(1)
12.1.15 Shock absorbers based on woodpecker's head
536(1)
12.1.16 Natural graded and sandwich structures (osteoderms)
537(2)
12.1.17 Cutting edges
539(2)
12.1.18 Ovipositor drill
541(1)
12.1.19 Birds
541(2)
12.1.20 Fish
543(1)
12.1.21 Structures from diatoms
544(1)
12.1.22 Structures based on echinoderms
545(1)
12.1.23 Whale-fin-inspired turbine blades
546(1)
12.2 Medical applications
547(10)
12.2.1 Bioglass®
553(1)
12.2.2 Tissue engineering scaffolds
553(1)
12.2.3 Bioinspired scaffolds
554(1)
12.2.4 Vesicles for drug delivery
555(1)
12.2.5 The blue blood of the horseshoe crab
556(1)
Exercises
557(3)
13 Molecular-based biomimetics
560(60)
Introduction
560(1)
13.1 Self-assembly structures
561(2)
13.2 Phage-enabled assembly
563(3)
13.3 Genetically engineered peptides for inorganics (GEPIs)
566(2)
13.4 Genetic engineering
568(3)
13.4.1 General principles and methodology
568(1)
13.4.2 Applications
569(2)
13.5 Virus-assisted synthetic materials
571(5)
13.6 Bioinspiration from the molecular level: the bottom-up approach
576(3)
13.7 MEMS and NEMS
579(2)
13.8 Bioinspired synthesis and processing of biopolymers
581(1)
Summary
582(1)
Exercises
583(1)
References
584(36)
Index 620
Marc André Meyers, Distinguished Professor at the University of California, San Diego, is the author or co-author of three other books and approximately 400 papers. The recipient of important awards from Europe (Humboldt Senior Scientist Award and J. S. Rinehart Award), China (Lee Hsun Lecture Award; Visiting Professor, Chinese Academy of Sciences) and the US (Acta Materialia Materials and Society Award, TMS Educator Award, SMD/TMS Distinguished Scientist and Distinguished Service Awards, ASM Albert Sauveur Award, ASM Albert Easton White Award), he is a fellow of TMS, APS and ASM, and a member of the Brazilian Academy of Sciences. He is also the author of three fiction novels. Po-Yu Chen, Assistant Professor of the Materials Science and Engineering Department at National Tsing Hua University, Taiwan, is a graduate of the University of California, San Diego. His current research is in the fields of biological (natural) materials, bio-inspired/biomimetic materials, biomedical materials, and green and energy-related materials. He is the author and co-author of several highly-cited review articles in biological and bio-inspired materials. A member of the TMS Biomaterials Committee, he organized several bio-related symposiums and workshops in international conferences. He is the recipient of Materials Science and Engineering C Young Researcher Award and ASME Emerging Researchers in Biomedical Engineering in 2011 and received the Distinguished Young Researcher Career Award from Taiwan National Science Council.