Preface |
|
xv | |
List of Boxes |
|
xviii | |
|
1 Evolution of materials science and engineering: from natural to bioinspired materials |
|
|
1 | (16) |
|
|
1 | (2) |
|
1.2 Evolution of materials science and engineering |
|
|
3 | (5) |
|
1.2.1 Traditional metallurgy |
|
|
3 | (3) |
|
1.2.2 The structure-properties-performance triangle |
|
|
6 | (1) |
|
1.2.3 Functional materials |
|
|
7 | (1) |
|
1.3 Biological and bioinspired materials |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
13 | (4) |
Part I Basic biology principles |
|
17 | (138) |
|
2 Self-assembly, hierarchy, and evolution |
|
|
19 | (34) |
|
|
19 | (1) |
|
2.1 Hierarchical structures |
|
|
19 | (10) |
|
|
29 | (1) |
|
2.3 Self-organization and self-assembly |
|
|
30 | (1) |
|
|
31 | (2) |
|
2.5 Evolution and convergence |
|
|
33 | (3) |
|
2.6 Ashby-Wegst performance plots |
|
|
36 | (4) |
|
|
40 | (5) |
|
2.8 Weibull distribution of failure strengths |
|
|
45 | (2) |
|
|
47 | (4) |
|
|
51 | (2) |
|
3 Basic building blocks: biopolymers |
|
|
53 | (49) |
|
|
53 | (1) |
|
|
54 | (1) |
|
3.2 Nucleotides and nucleic acid |
|
|
55 | (2) |
|
3.3 Amino acids, peptides, and proteins |
|
|
57 | (32) |
|
3.3.1 Amino acids and peptides |
|
|
57 | (9) |
|
3.3.2 Overview of protein structure |
|
|
66 | (3) |
|
|
69 | (12) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
84 | (4) |
|
3.3.7 Resilin and abductin |
|
|
88 | (1) |
|
3.3.8 Other structural proteins |
|
|
88 | (1) |
|
|
89 | (6) |
|
3.4.1 Chitin and chitosan |
|
|
90 | (3) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
95 | (1) |
|
3.7 Formation of biopolymers |
|
|
95 | (2) |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (3) |
|
|
102 | (27) |
|
|
102 | (1) |
|
|
103 | (7) |
|
|
107 | (3) |
|
|
110 | (1) |
|
4.2 Mechanical properties |
|
|
110 | (1) |
|
|
110 | (7) |
|
4.4 Cell motility, locomotion, and adhesion |
|
|
117 | (2) |
|
4.5 Flexure and compressive resistance of hollow and solid cylinders: application to microtubules |
|
|
119 | (6) |
|
4.6 From cells to organisms |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (26) |
|
|
129 | (1) |
|
|
129 | (3) |
|
5.2 Growth and morphology of crystals |
|
|
132 | (4) |
|
|
136 | (8) |
|
5.4 Origins and structures |
|
|
144 | (7) |
|
|
151 | (1) |
|
|
152 | (3) |
Part II Biological materials |
|
155 | (342) |
|
6 Silicate- and calcium-carbonate-based composites |
|
|
157 | (66) |
|
|
157 | (1) |
|
6.1 Diatoms, sea sponges, and other silicate-based materials |
|
|
157 | (7) |
|
6.1.1 Diatoms and radiolarians |
|
|
157 | (3) |
|
|
160 | (4) |
|
|
164 | (47) |
|
6.2.1 Classification and structures |
|
|
164 | (4) |
|
|
168 | (28) |
|
|
196 | (6) |
|
|
202 | (9) |
|
6.3 Teeth of marine organisms: chiton radula and marine worm |
|
|
211 | (2) |
|
|
213 | (1) |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (2) |
|
|
220 | (3) |
|
7 Calcium-phosphate-based composites |
|
|
223 | (69) |
|
|
223 | (1) |
|
|
223 | (32) |
|
|
224 | (2) |
|
7.1.2 Bone cells and remodeling |
|
|
226 | (1) |
|
|
226 | (7) |
|
|
233 | (6) |
|
7.1.5 Fracture and fracture toughness of bone |
|
|
239 | (15) |
|
|
254 | (1) |
|
|
255 | (7) |
|
7.2.1 Structure and functionality |
|
|
255 | (2) |
|
7.2.2 Quasistatic and dynamic mechanical behavior |
|
|
257 | (2) |
|
7.2.3 Exceptional fracture resistance |
|
|
259 | (3) |
|
|
262 | (12) |
|
7.3.1 Structure and properties |
|
|
262 | (1) |
|
7.3.2 Fracture toughness and toughening mechanisms |
|
|
263 | (11) |
|
7.4 Other mineralized biological materials |
|
|
274 | (9) |
|
|
274 | (4) |
|
|
278 | (2) |
|
|
280 | (3) |
|
|
283 | (2) |
|
|
285 | (7) |
|
8 Biological polymers and polymer composites |
|
|
292 | (63) |
|
|
292 | (1) |
|
8.1 Tendons and ligaments |
|
|
293 | (3) |
|
8.2 Spider and other silks |
|
|
296 | (8) |
|
8.2.1 Adhesive in spider web |
|
|
301 | (1) |
|
8.2.2 Molecular dynamics predictions |
|
|
301 | (3) |
|
8.3 Arthropod exoskeletons |
|
|
304 | (14) |
|
|
305 | (7) |
|
|
312 | (6) |
|
8.4 Keratin-based materials |
|
|
318 | (14) |
|
|
319 | (4) |
|
|
323 | (5) |
|
|
328 | (4) |
|
|
332 | (1) |
|
|
332 | (7) |
|
|
339 | (3) |
|
8.7 Invertebrate jaws and mandibles |
|
|
342 | (4) |
|
|
346 | (2) |
|
|
348 | (5) |
|
|
353 | (2) |
|
|
355 | (42) |
|
|
355 | (1) |
|
9.1 Constitutive equations for soft biopolymers |
|
|
355 | (7) |
|
9.1.1 Worm-like chain model |
|
|
355 | (3) |
|
|
358 | (1) |
|
9.1.3 Flory-Treloar equations |
|
|
359 | (1) |
|
9.1.4 Mooney-Rivlin equation |
|
|
359 | (1) |
|
|
359 | (2) |
|
|
361 | (1) |
|
9.1.7 Molecular dynamics calculations |
|
|
362 | (1) |
|
|
362 | (13) |
|
|
375 | (3) |
|
|
378 | (6) |
|
9.4.1 Nonlinear elasticity |
|
|
381 | (2) |
|
|
383 | (1) |
|
|
384 | (3) |
|
|
387 | (3) |
|
9.7 Extreme keratin: hagfish slime and wool |
|
|
390 | (2) |
|
|
392 | (3) |
|
|
395 | (2) |
|
10 Biological foams (cellular solids) |
|
|
397 | (55) |
|
|
397 | (1) |
|
10.1 Lightweight structures for bending and torsion resistance |
|
|
397 | (3) |
|
10.2 Basic equations for foams |
|
|
400 | (10) |
|
|
404 | (1) |
|
|
405 | (2) |
|
|
407 | (3) |
|
|
410 | (7) |
|
|
417 | (3) |
|
|
420 | (15) |
|
10.5.1 Toucan and hornbill beaks |
|
|
420 | (5) |
|
10.5.2 Modeling of interior foam (Gibson-Ashby constitutive equations) |
|
|
425 | (10) |
|
|
435 | (8) |
|
|
443 | (3) |
|
|
446 | (3) |
|
|
449 | (3) |
|
11 Functional biological materials |
|
|
452 | (45) |
|
|
452 | (1) |
|
11.1 Adhesion and attachment |
|
|
452 | (3) |
|
|
455 | (6) |
|
|
461 | (1) |
|
|
461 | (4) |
|
11.5 Abalone foot: underwater adhesion |
|
|
465 | (7) |
|
11.6 Surfaces and surface properties |
|
|
472 | (6) |
|
11.6.1 Multifunctional surface structures of plants |
|
|
472 | (5) |
|
|
477 | (1) |
|
|
478 | (8) |
|
|
478 | (1) |
|
11.7.2 Photonic crystal arrays |
|
|
479 | (2) |
|
11.7.3 Thin film interference |
|
|
481 | (1) |
|
|
482 | (2) |
|
|
484 | (2) |
|
11.8 Cutting: sharp biological materials |
|
|
486 | (7) |
|
|
486 | (1) |
|
|
487 | (4) |
|
|
491 | (1) |
|
11.8.4 Wood wasp ovipositor |
|
|
492 | (1) |
|
|
493 | (2) |
|
|
495 | (2) |
Part III Bioinspired materials and biomimetics |
|
497 | (123) |
|
12 Bioinspired materials: traditional biomimetics |
|
|
499 | (61) |
|
|
499 | (2) |
|
12.1 Structural and functional applications |
|
|
501 | (46) |
|
|
501 | (3) |
|
12.1.2 Aerospace materials |
|
|
504 | (2) |
|
|
506 | (2) |
|
12.1.4 Fiber optics and microlenses |
|
|
508 | (2) |
|
|
510 | (1) |
|
|
511 | (1) |
|
|
512 | (2) |
|
12.1.8 Nacre-inspired structures |
|
|
514 | (10) |
|
12.1.9 Marine adhesives: mussel byssal attachment |
|
|
524 | (3) |
|
12.1.10 Sonar-enabled cane inspired by bats |
|
|
527 | (1) |
|
|
527 | (4) |
|
12.1.12 Origami structures |
|
|
531 | (1) |
|
12.1.13 Self-healing composites |
|
|
532 | (3) |
|
12.1.14 Sheep-horn-inspired composites |
|
|
535 | (1) |
|
12.1.15 Shock absorbers based on woodpecker's head |
|
|
536 | (1) |
|
12.1.16 Natural graded and sandwich structures (osteoderms) |
|
|
537 | (2) |
|
|
539 | (2) |
|
|
541 | (1) |
|
|
541 | (2) |
|
|
543 | (1) |
|
12.1.21 Structures from diatoms |
|
|
544 | (1) |
|
12.1.22 Structures based on echinoderms |
|
|
545 | (1) |
|
12.1.23 Whale-fin-inspired turbine blades |
|
|
546 | (1) |
|
12.2 Medical applications |
|
|
547 | (10) |
|
|
553 | (1) |
|
12.2.2 Tissue engineering scaffolds |
|
|
553 | (1) |
|
12.2.3 Bioinspired scaffolds |
|
|
554 | (1) |
|
12.2.4 Vesicles for drug delivery |
|
|
555 | (1) |
|
12.2.5 The blue blood of the horseshoe crab |
|
|
556 | (1) |
|
|
557 | (3) |
|
13 Molecular-based biomimetics |
|
|
560 | (60) |
|
|
560 | (1) |
|
13.1 Self-assembly structures |
|
|
561 | (2) |
|
13.2 Phage-enabled assembly |
|
|
563 | (3) |
|
13.3 Genetically engineered peptides for inorganics (GEPIs) |
|
|
566 | (2) |
|
|
568 | (3) |
|
13.4.1 General principles and methodology |
|
|
568 | (1) |
|
|
569 | (2) |
|
13.5 Virus-assisted synthetic materials |
|
|
571 | (5) |
|
13.6 Bioinspiration from the molecular level: the bottom-up approach |
|
|
576 | (3) |
|
|
579 | (2) |
|
13.8 Bioinspired synthesis and processing of biopolymers |
|
|
581 | (1) |
|
|
582 | (1) |
|
|
583 | (1) |
|
|
584 | (36) |
Index |
|
620 | |