Atjaunināt sīkdatņu piekrišanu

E-grāmata: Copper Wire Bonding

  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Sep-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461457619
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Sep-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461457619

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changesbond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bondpad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and recommendations on the bond process, bondpad metallurgies, and appropriate reliability tests for copper wire-bonded electronic components.

In summary, this book:





Introduces copper wire bonding technologies Presents copper wire bonding processes Discusses copper wire bonding metallurgies Covers recent advancements in copper wire bonding including the bonding process, equipment changes, bondpad materials and surface finishes Covers the reliability tests and concerns Covers the current implementation of copper wire bonding in the electronicsindustry  Features 120 figures and tables

Copper Wire Bonding is an essential reference for industry professionals seeking detailed information on all facets of copper wire bonding technology.

Recenzijas

From the reviews:

The book gives a wide perspective on the technical insights of copper wire bonding deployment in industry while adding very valuable industry insights. It is a good resource to demonstrate the many facets of copper wire bonding, and can serve as a very informative technical reference. Valuable as a learning tool for copper wire bonding, its clear relevance to real world industry practices make it useful for both academics and semiconductor industry practitioners. (Chong Leong Gan, Classe Francis, Bak Lee Chan and Hashim Uda, Microelectronics Reliability, November, 2013)

1 Copper Wire Bonding
1(10)
1.1 Wire Bonding Technologies
1(1)
1.2 Ball Bonding vs. Wedge Bonding
2(1)
1.3 From Gold to Cu Wire Bonding
3(5)
1.4 Market Adoption
8(1)
1.5 Summary
9(2)
2 Bonding Process
11(28)
2.1 Bond Wire
11(4)
2.2 Oxidation Prevention Technology
15(1)
2.3 Free Air Ball Formation
15(2)
2.4 First (Ball) and Second (Wedge) Bond
17(1)
2.5 Wire Bond Process Parameters
18(9)
2.5.1 Ultrasonic Energy
18(3)
2.5.2 Electric Flame-Off Current and Firing Time
21(4)
2.5.3 Bond Force
25(1)
2.5.4 Bonding Temperature and Time
26(1)
2.6 Bonding Process Optimization
27(3)
2.7 Bonding Equipment
30(7)
2.8 Summary
37(2)
3 Bonding Metallurgies
39(18)
3.1 Bare Copper (Cu) and Palladium-Coated Cu Wire
39(1)
3.2 Bare Cu Wire on Al Pads
40(4)
3.3 Bare Cu Wire on Au- and Ni-Based Die Bond Pads
44(1)
3.4 Cu-Cu Bond
45(1)
3.5 Bond-Pad Interfacial Metallurgies
46(9)
3.5.1 Au-Al and Cu-Al Intermetallics
46(8)
3.5.2 Cu-Au and Cu-Al Intermetallics
54(1)
3.5.3 Au-AuNi, Au-AuPdNi, Cu-AuNi, and Cu-AlPdNi
55(1)
3.6 Summary
55(2)
4 Wire Bond Evaluation
57(16)
4.1 Criteria for Good Bond Formation
57(1)
4.2 Pre-bonding Inspection
58(1)
4.3 Post-bonding Inspection
58(3)
4.3.1 Nondestructive Test
59(1)
4.3.2 Destructive Tests
59(2)
4.4 Mechanical Tests
61(5)
4.4.1 Shear Test
61(2)
4.4.2 Pull Test
63(3)
4.5 Failure Mechanism and Modes
66(1)
4.6 Quality Assurance and Testing Methods
67(3)
4.7 Wire Bond Reliability Evaluation
70(1)
4.8 Summary
71(2)
5 Thermal Reliability Tests
73(20)
5.1 High-Temperature Storage Tests
73(14)
5.1.1 Au Wire on Al Pads
74(2)
5.1.2 Bare Cu on Al, Au, and NiPdAu Pads
76(5)
5.1.3 Bare Cu vs. Palladium-Coated Copper Wires
81(4)
5.1.4 IMC Growth Model and Acceleration Factor
85(2)
5.2 Thermal Shock and Thermal Cycling Tests
87(4)
5.2.1 Bare Cu and PdCu Wires
89(1)
5.2.2 Failure Model and Acceleration Factor for Thermal Cycling Tests
90(1)
5.3 Summary
91(2)
6 Humidity and Electromigration Tests
93(18)
6.1 Humidity-Related Reliability Tests (PCT and HAST)
93(9)
6.1.1 Bare Cu Wire
94(3)
6.1.2 PdCuWire
97(4)
6.1.3 Failure Model and Acceleration Factor for Humidity Tests
101(1)
6.2 Electromigration Tests
102(6)
6.2.1 Au-Al System
103(5)
6.2.2 Failure Model and Acceleration Factor for Electromigration Tests
108(1)
6.3 Summary
108(3)
7 Wire Bond Pads
111(22)
7.1 Bond Pad Materials
111(4)
7.1.1 Al
112(3)
7.1.2 Cu
115(1)
7.2 Over Pad Metallization/Pad Finishes
115(3)
7.3 Pad Finish/Metallization Thickness
118(1)
7.4 Factors Affecting Pad Bondability
119(6)
7.4.1 Pad Contamination
120(3)
7.4.2 Lead Frame Contamination
123(1)
7.4.3 Pad Surface Roughness
124(1)
7.5 Bond Pad Surface Treatments
125(6)
7.5.1 Organic Coatings on Pad
125(1)
7.5.2 Plasma Treatment
126(5)
7.6 Summary
131(2)
8 Concerns and Solutions
133(18)
8.1 Cu Hardness: Al Splash and Pad Cratering
133(1)
8.2 Process-Related Concerns
134(2)
8.2.1 Oxidation Prevention Technology
135(1)
8.2.2 Capillary Mean Time Between Assist and Lifetime
135(1)
8.2.3 Wire Bonding for Specialized Applications
136(1)
8.3 Corrosion from Mold Compound and Decapsulating Chemicals
136(1)
8.4 Other Concerns
137(2)
8.4.1 Second Bond and Tail Bond
138(1)
8.4.2 Yield and Requalification
138(1)
8.4.3 Lack of Standardized Test Methods and Reliability Data
139(1)
8.4.4 Lack of Widespread Cu Wire Bonding Capability
139(1)
8.5 Solutions
139(9)
8.5.1 Bonding Process Optimization
139(2)
8.5.2 Oxidation Prevention Technology
141(1)
8.5.3 Pad Cratering, Al Splash, and Surface Contamination
142(3)
8.5.4 Mold Compound and Deprocessing Scheme
145(2)
8.5.5 Yield Improvement
147(1)
8.6 Summary
148(3)
9 Recommendations
151(8)
9.1 Copper Wire Bonding Process
151(2)
9.2 Palladium-Coated Copper Wires
153(1)
9.3 Bonding Pad
154(1)
9.4 Bond-Pad Interface
155(1)
9.5 Strength and Reliability Evaluation
156(3)
Appendix A Reliability Data 159(8)
Appendix B Patents on Copper Wire Bonding 167(44)
References 211(16)
Index 227
Preeti Chauhan is a researcher from the Center for Advanced Life Cycle Engineering at the University of Maryland. She is currently a technology development Q&R engineer at Intel Corporation.

Anupam Choubey is a consultant in the area of packaging engineering in the Boston, MA area.

ZhaoWei Zhong is a Professor of Mechanical and Aerospace Engineering at Nanyang Technological University.

Michael Pecht is a world renowned reliability engineer and educator. He is the founder and Director of CALCE (Center for Advanced Life Cycle Engineering) at the University of Maryland.