Atjaunināt sīkdatņu piekrišanu

Course in Analytic Number Theory [Hardback]

  • Formāts: Hardback, 371 pages, height x width: 254x178 mm, weight: 840 g
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 28-Feb-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470417065
  • ISBN-13: 9781470417062
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 153,55 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 371 pages, height x width: 254x178 mm, weight: 840 g
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 28-Feb-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470417065
  • ISBN-13: 9781470417062
Citas grāmatas par šo tēmu:
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem.

The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader.

The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Preface xi
Acknowledgments xiii
How to use this text xv
Introduction xvii
Chapter 1 Arithmetic Functions
1(40)
§1.1 The method of Chebyshev
1(5)
§1.2 Bertrand's Postulate
6(1)
§1.3 Simple estimation techniques
7(3)
§1.4 The Mertens estimates
10(6)
§1.5 Sums over divisors
16(5)
§1.6 The hyperbola method
21(6)
§1.7 Notes
27(14)
Exercises
33(8)
Chapter 2 Topics on Arithmetic Functions
41(18)
§2.1 * The neighborhood method
41(5)
§2.2 * The normal order method
46(3)
§2.3 * The Mertens function
49(6)
§2.4 Notes
55(4)
Exercises
56(3)
Chapter 3 Characters and Euler Products
59(52)
§3.1 The Euler product formula
59(5)
§3.2 Convergence of Dirichlet series
64(3)
§3.3 Harmonics
67(4)
§3.4 Group representations
71(5)
§3.5 Fourier analysis on finite groups
76(7)
§3.6 Primes in arithmetic progressions
83(6)
§3.7 Gauss sums and primitive characters
89(6)
§3.8 * The character group
95(4)
§3.9 Notes
99(12)
Exercises
103(8)
Chapter 4 The Circle Method
111(46)
§4.1 Diophantine equations
111(5)
§4.2 The major arcs
116(7)
§4.3 The singular series
123(7)
§4.4 Weyl sums
130(8)
§4.5 An asymptotic estimate
138(6)
§4.6 Notes
144(13)
Exercises
150(7)
Chapter 5 The Method of Contour Integrals
157(12)
§5.1 The Perron formula
157(5)
§5.2 Bounds for Dirichlet L-functions
162(3)
§5.3 Notes
165(4)
Exercises
166(3)
Chapter 6 The Prime Number Theorem
169(14)
§6.1 A zero-free region
169(4)
§6.2 A proof of the PNT
173(4)
§6.3 Notes
177(6)
Exercises
179(4)
Chapter 7 The Siegel-Walfisz Theorem
183(26)
§7.1 Zero-free regions for L-functions
183(7)
§7.2 An idea of Landau
190(3)
§7.3 The theorem of Siegel
193(3)
§7.4 The Borel-Caratheodory lemma
196(2)
§7.5 The PNT for arithmetic progressions
198(7)
§7.6 Notes
205(4)
Exercises
205(4)
Chapter 8 Mainly Analysis
209(46)
§8.1 The Poisson summation formula
209(7)
§8.2 Theta functions
216(7)
§8.3 The gamma function
223(4)
§8.4 The functional equation of ζ(s)
227(4)
§8.5 * The functional equation of L(s, Χ)
231(4)
§8.6 The Hadamard factorization theorem
235(5)
§8.7 * The Phragmen-Lindelof principle
240(3)
§8.8 Notes
243(12)
Exercises
247(8)
Chapter 9 Euler Products and Number Fields
255(52)
§9.1 The Dedekind zeta function
255(7)
§9.2 The analytic class number formula
262(7)
§9.3 * Class numbers of quadratic fields
269(6)
§9.4 * A discriminant bound
275(6)
§9.5 * The Prime Ideal Theorem
281(6)
§9.6 * A proof of the Ikehara theorem
287(6)
§9.7 Induced representations
293(3)
§9.8 Artin L-functions
296(6)
§9.9 Notes
302(5)
Exercises
303(4)
Chapter 10 Explicit Formulas
307(20)
§10.1 The von Mangoldt formula
307(7)
§10.2 The primes and RH
314(1)
§10.3 The Guinand-Weil formula
315(7)
§10.4 Notes
322(5)
Exercises
324(3)
Chapter 11 Supplementary Exercises
327(14)
Exercises
327(3)
Solutions
330(11)
Bibliography 341(16)
List of Notations 357(6)
Index 363
Marius Overholt, University of Tromso, Norway.