Preface |
|
xi | |
Acknowledgments |
|
xiii | |
How to use this text |
|
xv | |
Introduction |
|
xvii | |
|
Chapter 1 Arithmetic Functions |
|
|
1 | (40) |
|
§1.1 The method of Chebyshev |
|
|
1 | (5) |
|
§1.2 Bertrand's Postulate |
|
|
6 | (1) |
|
§1.3 Simple estimation techniques |
|
|
7 | (3) |
|
§1.4 The Mertens estimates |
|
|
10 | (6) |
|
|
16 | (5) |
|
§1.6 The hyperbola method |
|
|
21 | (6) |
|
|
27 | (14) |
|
|
33 | (8) |
|
Chapter 2 Topics on Arithmetic Functions |
|
|
41 | (18) |
|
§2.1 * The neighborhood method |
|
|
41 | (5) |
|
§2.2 * The normal order method |
|
|
46 | (3) |
|
§2.3 * The Mertens function |
|
|
49 | (6) |
|
|
55 | (4) |
|
|
56 | (3) |
|
Chapter 3 Characters and Euler Products |
|
|
59 | (52) |
|
§3.1 The Euler product formula |
|
|
59 | (5) |
|
§3.2 Convergence of Dirichlet series |
|
|
64 | (3) |
|
|
67 | (4) |
|
§3.4 Group representations |
|
|
71 | (5) |
|
§3.5 Fourier analysis on finite groups |
|
|
76 | (7) |
|
§3.6 Primes in arithmetic progressions |
|
|
83 | (6) |
|
§3.7 Gauss sums and primitive characters |
|
|
89 | (6) |
|
§3.8 * The character group |
|
|
95 | (4) |
|
|
99 | (12) |
|
|
103 | (8) |
|
Chapter 4 The Circle Method |
|
|
111 | (46) |
|
§4.1 Diophantine equations |
|
|
111 | (5) |
|
|
116 | (7) |
|
|
123 | (7) |
|
|
130 | (8) |
|
§4.5 An asymptotic estimate |
|
|
138 | (6) |
|
|
144 | (13) |
|
|
150 | (7) |
|
Chapter 5 The Method of Contour Integrals |
|
|
157 | (12) |
|
|
157 | (5) |
|
§5.2 Bounds for Dirichlet L-functions |
|
|
162 | (3) |
|
|
165 | (4) |
|
|
166 | (3) |
|
Chapter 6 The Prime Number Theorem |
|
|
169 | (14) |
|
|
169 | (4) |
|
|
173 | (4) |
|
|
177 | (6) |
|
|
179 | (4) |
|
Chapter 7 The Siegel-Walfisz Theorem |
|
|
183 | (26) |
|
§7.1 Zero-free regions for L-functions |
|
|
183 | (7) |
|
|
190 | (3) |
|
§7.3 The theorem of Siegel |
|
|
193 | (3) |
|
§7.4 The Borel-Caratheodory lemma |
|
|
196 | (2) |
|
§7.5 The PNT for arithmetic progressions |
|
|
198 | (7) |
|
|
205 | (4) |
|
|
205 | (4) |
|
Chapter 8 Mainly Analysis |
|
|
209 | (46) |
|
§8.1 The Poisson summation formula |
|
|
209 | (7) |
|
|
216 | (7) |
|
|
223 | (4) |
|
§8.4 The functional equation of ζ(s) |
|
|
227 | (4) |
|
§8.5 * The functional equation of L(s, Χ) |
|
|
231 | (4) |
|
§8.6 The Hadamard factorization theorem |
|
|
235 | (5) |
|
§8.7 * The Phragmen-Lindelof principle |
|
|
240 | (3) |
|
|
243 | (12) |
|
|
247 | (8) |
|
Chapter 9 Euler Products and Number Fields |
|
|
255 | (52) |
|
§9.1 The Dedekind zeta function |
|
|
255 | (7) |
|
§9.2 The analytic class number formula |
|
|
262 | (7) |
|
§9.3 * Class numbers of quadratic fields |
|
|
269 | (6) |
|
§9.4 * A discriminant bound |
|
|
275 | (6) |
|
§9.5 * The Prime Ideal Theorem |
|
|
281 | (6) |
|
§9.6 * A proof of the Ikehara theorem |
|
|
287 | (6) |
|
§9.7 Induced representations |
|
|
293 | (3) |
|
|
296 | (6) |
|
|
302 | (5) |
|
|
303 | (4) |
|
Chapter 10 Explicit Formulas |
|
|
307 | (20) |
|
§10.1 The von Mangoldt formula |
|
|
307 | (7) |
|
|
314 | (1) |
|
§10.3 The Guinand-Weil formula |
|
|
315 | (7) |
|
|
322 | (5) |
|
|
324 | (3) |
|
Chapter 11 Supplementary Exercises |
|
|
327 | (14) |
|
|
327 | (3) |
|
|
330 | (11) |
Bibliography |
|
341 | (16) |
List of Notations |
|
357 | (6) |
Index |
|
363 | |