Atjaunināt sīkdatņu piekrišanu

Developments in Antenna Analysis and Design, Volume 1 [Hardback]

Edited by (University of Central Florida, USA)
  • Formāts: Hardback, 506 pages, height x width: 234x156 mm
  • Sērija : Electromagnetic Waves
  • Izdošanas datums: 24-Jan-2019
  • Izdevniecība: Institution of Engineering and Technology
  • ISBN-10: 1785618881
  • ISBN-13: 9781785618888
  • Hardback
  • Cena: 171,76 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 506 pages, height x width: 234x156 mm
  • Sērija : Electromagnetic Waves
  • Izdošanas datums: 24-Jan-2019
  • Izdevniecība: Institution of Engineering and Technology
  • ISBN-10: 1785618881
  • ISBN-13: 9781785618888
Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments. It includes topics such as body-worn antennas, that play an important role as sensors for Internet of Things (IoT), and millimeter wave antennas that are vitally important for 5G devices. It also covers a wide frequency range that includes terahertz and optical frequencies. Additionally, it discusses topics such as theoretical bounds of antennas and aspects of statistical analysis that are not readily found in the existing literature.



This first volume covers the theory of characteristic modes (TCM) and characteristic bases; wideband antenna element designs; MIMO antennas; antennas for wireless communication; reconfigurable antennas employing microfluidics; flexible and body-worn antennas; and antennas using meta-atoms and artificially-engineered materials, or metamaterials (MTMs).



A second volume covers the topics of: graphene-based antennas; millimeter-wave antennas; terahertz antennas; optical antennas; fundamental bounds of antennas; fast and numerically efficient techniques for analyzing antennas; statistical analysis of antennas; ultra-wideband arrays; reflectarrays; and antennas for small satellites, viz., CubeSats.



The two volumes represent a unique combination of topics pertaining to antenna design and analysis, not found elsewhere. It is essential reading for the antenna community including designers, students, researchers, faculty engaged in teaching and research of antennas, and the users as well as decision makers.
Preface xi
1 Applications of the characteristic mode theory to antenna design 1(34)
Ting-Yen Shih
Nader Behdad
1.1 Introduction
1(5)
1.1.1 Background
1(1)
1.1.2 Characteristic mode theory
1(5)
1.2 Antenna design examples using the characteristic mode theory
6(25)
1.2.1 Circularly polarized antennas
7(4)
1.2.2 Wideband antennas
11(1)
1.2.3 Chassis-based MIMO antennas
12(3)
1.2.4 Bandwidth enhancement of platform-based antennas
15(16)
1.3 Summary
31(1)
References
32(3)
2 Design of antennas mounted on complex platforms using the characteristic mode (CM) and characteristic basis (CB) function methods 35(42)
Raj Mittra
Ashwani Kumar
Chao Li
2.1 Introduction
35(2)
2.2 TCM approach to designing antennas for mobile phone platforms
37(5)
2.3 Characteristic basis method for locating antennas on mobile phone platforms
42(3)
2.4 Placement of multiple antennas on a complex platform
45(7)
2.4.1 TCM-based approach
45(5)
2.4.2 CB-based approach
50(2)
2.5 Illustrative examples
52(10)
2.5.1 Four microstrip patch antennas on an FR4 substrate
52(3)
2.5.2 Topside of a ship excited by monopoles
55(2)
2.5.3 Four PIFA antennas on FR4 substrate
57(1)
2.5.4 Chassis excited by six dipoles
58(4)
2.6 Conclusion
62(1)
Acknowledgment
63(1)
Appendix
64(10)
Appendix A1 Characteristic modes and bases
64(9)
A1.1 Generation of characteristic modes (CMs)
64(1)
A1.2 Generation of CBs
64(9)
Appendix A2
73(5)
A2.1 TCM analysis of mobile phone antenna and antenna-plus-platform
73(1)
References
74(3)
3 Wideband L-probe patch antenna 77(32)
Hau Wah Lai
Kwai Man Luk
3.1 Introduction
77(1)
3.2 Basic characteristics
78(13)
3.2.1 L-probe feeding mechanism
78(5)
3.2.2 M-probe feeding mechanism
83(8)
3.3 Parametric studies
91(6)
3.3.1 Performance with different Ph
91(2)
3.3.2 Performance with different aspect ratio
93(4)
3.4 Development of L-probe and M-probe fed patch antenna
97(6)
3.4.1 Circular polarization
97(1)
3.4.2 Dual polarization
98(1)
3.4.3 Dual band
99(1)
3.4.4 Conformal ground plane
99(1)
3.4.5 Printed circuit board
100(1)
3.4.6 Fusion of the L-probe and M-probe in antenna design
100(3)
3.5 Conclusion
103(1)
References
103(6)
4 Advancements in MIMO antenna systems 109(20)
Mohammad S. Sharawi
4.1 Introduction
109(1)
4.2 MIMO antenna system performance metrics
110(5)
4.3 Major MIMO antenna system design challenges
115(1)
4.4 MIMO antenna system examples
116(6)
4.4.1 Mobile phones and handheld devices
116(3)
4.4.2 Cognitive radio front-ends
119(1)
4.4.3 USB dongle MIMO implementations
120(1)
4.4.4 Wireless access point MIMO implementations
121(1)
4.5 MIMO antenna solutions for 5G-enabled systems
122(1)
4.5.1 Mobile terminal 5G solutions
122(1)
4.5.2 Base station 5G solutions
122(1)
4.6 Conclusions
123(1)
References
124(5)
5 Reconfigurable leaky-wave antennas 129(42)
Yingjie Jay Guo
Debabrata K. Karmokar
Trevor S. Bird
5.1 Introduction
129(1)
5.2 History of LWAs
130(2)
5.2.1 Basic operating principle
130(1)
5.2.2 Classification of LWAs
131(1)
5.3 Passive frequency-scanning LWA structures
132(6)
5.3.1 One-dimensional (1-D) Fabry-Perot LWA
132(3)
5.3.2 Composite right/left-handed transmission line and LWA
135(2)
5.3.3 Half-width microstrip LWA
137(1)
5.4 Reconfigurable LWAs
138(11)
5.4.1 1-D FP-reconfigurable LWAs
138(8)
5.4.2 Two-dimensional (2-D) FP-reconfigurable LWA
146(3)
5.5 Experimental results
149(18)
5.5.1 CRLH-based reconfigurable LWA
152(4)
5.5.2 Reconfigurable half-width microstrip LWA
156(11)
5.6 Conclusion
167(1)
References
168(3)
6 Reconfigurable high-gain antennas for wireless communications 171(32)
Yingjie Jay Guo
Pei-Yuan Qin
Raj Mittra
6.1 Introduction
171(1)
6.2 Reconfigurable array antennas
172(10)
6.3 Reconfigurable PRS antennas
182(15)
6.3.1 Frequency-reconfigurable PRS antenna
182(1)
6.3.2 Pattern-reconfigurable PRS antenna
183(6)
6.3.3 Polarization-reconfigurable PRS antenna
189(8)
6.4 Conclusions
197(1)
References
197(6)
7 Microfluidically reconfigurable antennas 203(40)
Gokhan Mumcu
7.1 Introduction
203(2)
7.2 Fabrication and actuation techniques
205(5)
7.3 Flexible and stretchable liquid metal antennas
210(3)
7.4 Frequency-reconfigurable liquid metal antennas
213(7)
7.5 Reconfigurable antennas using dielectric liquids
220(4)
7.6 Beam-steerable liquid metal antennas
224(3)
7.7 Reconfigurable antennas using microfluidically repositionable metallized plates
227(9)
7.8 Concluding remarks
236(1)
References
237(6)
8 Flexible and wearable antennas 243(36)
Muhammad M. Tahseen
Ahmed A. Kishk
8.1 Introduction
243(3)
8.2 Wearable antennas for biomedical applications
246(1)
8.3 AMC-based flexible wearable antennas
247(2)
8.4 Inkjet-printed wearable antennas
249(1)
8.5 Textile-based wearable antennas
250(21)
8.5.1 Single-and multi-layer multi-Bowtie conformal antennas
250(3)
8.5.2 Dielectric resonator antennas for wearable application
253(2)
8.5.3 Wearable artistic antennas for WLAN-band
255(16)
References
271(8)
9 Wearable technology and mobile platform for wearable antennas for human health monitoring 279(72)
Vijay K. Varadan
Pratyush Rai
Se Chang Oh
Prashanth Shyam Kumar
Mouli Ramasamy
Robert E. Harbaugh
9.1 Introduction
280(2)
9.2 Smart textile for health monitoring
282(4)
9.3 Electrical signals from the brain and heart
286(5)
9.4 Cardiovascular anatomy and electrophysiology
291(7)
9.4.1 The dipole theory for ECG
294(2)
9.4.2 Derivation of ECG from dipole vector
296(2)
9.5 Monitoring and diagnosis: neurological signal measurements
298(4)
9.6 Monitoring and diagnosis: cardiological signal measurements of diagnostic value
302(5)
9.7 Monitoring systems
307(4)
9.8 Neurological disorder monitoring by wearable wireless nano-bio-textile sensors
311(16)
9.9 Cardiovascular health monitoring
327(10)
9.9.1 Hardware system
328(1)
9.9.2 ECG signal acquisition
329(8)
9.10 Biofeedback system for therapeutics
337(3)
9.11 Conclusion
340(1)
References
341(10)
10 Meta-atoms and artificially engineered materials for antenna applications 351(56)
Ravi Kumar Arya
Shiyu Zhang
Shaileshachandra Pandey
Ashwani Kumar
Yiannis Vardaxoglou
William Whittow
Raj Mittra
10.1 Introduction
351(2)
10.2 Lens designs using MTMs
353(2)
10.3 Lens design using RO
355(1)
10.4 3D-Printing technique
356(1)
10.5 Design of artificially engineered materials
357(5)
10.5.1 Designing higher-permittivity materials from low-permittivity COTS material: method-1
358(1)
10.5.2 Designing higher-permittivity materials from low-permittivity COTS material: method-2
359(1)
10.5.3 Designing lower-permittivity materials from high-permittivity COTS material
360(1)
10.5.4 Designing lower-permittivity materials from high-permittivity 3D-printing material
360(2)
10.6 Different lens designs
362(22)
10.6.1 PLA Lens design
362(9)
10.6.2 DaD lens design
371(6)
10.6.3 ABS lens design
377(4)
10.6.4 Comparison of DaD and ABS lenses
381(3)
10.7 Summary
384(2)
10.8 Metal-only reflectarray antenna designs using metasurfaces
386(8)
10.9 Performance enhancement of antenna and array antennas using metasurface superstrates
394(8)
10.9.1 Example-1
394(4)
10.9.2 Example-2
398(4)
10.9.3 Summary
402(1)
References
402(5)
11 Microwave antennas based on metamaterials and metasurfaces 407(38)
Wen Xuan Tang
Tie Jun Cui
11.1 GRIN MTM lens antennas
408(17)
11.1.1 MTM flat lens antenna
408(11)
11.1.2 MTM curved lens antennas
419(6)
11.2 MTM antennas using transformation optics
425(11)
11.2.1 MTM flattened reflectors
427(4)
11.2.2 MTM flattened convex and hyperbolic lenses
431(3)
11.2.3 MTM Luneburg lens with flattened focal surface
434(2)
11.3 Metasurface antennas
436(4)
11.3.1 Holographic metasurfaces for beam scanning
438(1)
11.3.2 Spoof SPP radiations
438(1)
11.3.3 Coding metasurfaces
439(1)
References
440(5)
12 Metamaterial-based zero-phase-shift-line loop antennas 445(38)
Zhi Ning Chen
Xianming Qing
Jin Shi
Yunjia Zeng
12.1 Introduction
445(1)
12.2 State-of-the-art ZPSL loop antennas
446(1)
12.3 Modeling of zero-phase-shift-line structure
447(9)
12.3.1 Dispersion analysis of zero-phase-shift-line structure
447(5)
12.3.2 Design guidelines
452(4)
12.4 Design and applications
456(21)
12.4.1 Electrically large zero-phase-shift-line loop antennas for UHF near-field RF1D readers
456(14)
12.4.2 Horizontally polarized omnidirectional antenna for WLAN access points
470(2)
12.4.3 CP omnidirectional antenna for UHF far-field RFID readers
472(5)
12.5 Summary
477(1)
References
478(5)
Index 483
Raj Mittra is a Life Fellow of the IEEE, a Past-President of AP-S, and has served as the Editor of Transactions of the Antennas and Propagation Society. He won the Guggenheim Fellowship Award in 1965, the IEEE Centennial Medal in 1984, the IEEE Millennium medal in 2000, the IEEE/AP-S Distinguished Achievement Award in 2002, the AP-S Chen-To Tai Distinguished Educator Award in 2004 and the IEEE Electromagnetics Award in 2006. He has published over 1000 journal and symposium papers and more than 40 books or book chapters on various topics related to electromagnetics, antennas, microwaves and electronic packaging. He also has three patents on communication antennas to his credit.