Preface |
|
xi | |
1 Terahertz antennas, metasurfaces and planar devices using graphene |
|
1 | (38) |
|
|
Santiago Capdevila Cascante |
|
|
|
|
1 | (2) |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.2 2D materials in the framework of Maxwell's equations |
|
|
3 | (3) |
|
1.3 Graphene planar plasmonic antennas |
|
|
6 | (7) |
|
1.3.1 Fixed frequency plasmonic antennas |
|
|
6 | (3) |
|
1.3.2 Frequency-reconfigurable plasmonic antennas |
|
|
9 | (2) |
|
1.3.3 Graphene plasmonic antenna model |
|
|
11 | (2) |
|
1.4 Efficiency upper bounds in graphene tunable and non-reciprocal devices |
|
|
13 | (9) |
|
1.4.1 Generalized electric and magnetic field representation |
|
|
14 | (1) |
|
1.4.2 Demonstration of the upper bound |
|
|
15 | (2) |
|
1.4.3 Graphene figure of merit |
|
|
17 | (2) |
|
1.4.4 Device specific bounds |
|
|
19 | (3) |
|
1.5 Graphene terahertz non-reciprocal isolator |
|
|
22 | (5) |
|
1.5.1 Isolator working principle |
|
|
23 | (1) |
|
|
24 | (3) |
|
1.6 Graphene terahertz beam steering reflectarray prototype |
|
|
27 | (5) |
|
|
28 | (1) |
|
1.6.2 Design and measurement |
|
|
29 | (3) |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
34 | (5) |
2 Millimeter-wave antennas using printed-circuit-board and plated-through-hole technologies |
|
39 | (34) |
|
|
|
|
2.1 Wideband MMW ME dipole antennas |
|
|
40 | (13) |
|
2.1.1 Single feed printed ME dipole antenna |
|
|
40 | (7) |
|
2.1.2 Differential feed printed ME dipole antenna |
|
|
47 | (6) |
|
2.2 HOM MMW patch antenna |
|
|
53 | (9) |
|
2.2.1 Wideband HOM patch element |
|
|
53 | (5) |
|
2.2.2 Differentially fed HOM patch antenna |
|
|
58 | (4) |
|
2.3 Wideband MMW complementary source antennas for 5G |
|
|
62 | (8) |
|
2.3.1 Linearly polarized antenna fed by an SIW |
|
|
62 | (1) |
|
2.3.2 Radiation mechanism of the wideband antenna |
|
|
63 | (3) |
|
2.3.3 Comparison of simulation and measurement results |
|
|
66 | (4) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (2) |
3 THz photoconductive antennas |
|
73 | (54) |
|
|
|
|
3.1 Introduction of THz technology and photoconductive antenna |
|
|
73 | (5) |
|
3.1.1 Importance of THz technology |
|
|
73 | (1) |
|
|
73 | (1) |
|
3.1.3 Pulsed THz generation |
|
|
74 | (1) |
|
3.1.4 Photoconductive antenna |
|
|
75 | (2) |
|
3.1.5 Terahertz time-domain spectroscopy |
|
|
77 | (1) |
|
3.2 Theoretical modeling and numerical simulation |
|
|
78 | (17) |
|
3.2.1 Motivation and challenge |
|
|
78 | (1) |
|
3.2.2 Drude-Lorentz model |
|
|
79 | (2) |
|
3.2.3 Equivalent circuit model |
|
|
81 | (2) |
|
|
83 | (4) |
|
3.2.5 Simulation examples of full-wave model |
|
|
87 | (8) |
|
3.3 Experimental characterization of PCA component and system |
|
|
95 | (24) |
|
|
95 | (16) |
|
3.3.2 THz near-field microscopy |
|
|
111 | (8) |
|
|
119 | (1) |
|
|
120 | (7) |
4 Optical antennas |
|
127 | (34) |
|
|
Withawat Withayachumnankul |
|
|
|
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (8) |
|
4.3.1 Metal properties from microwave to optical frequencies |
|
|
129 | (3) |
|
|
132 | (2) |
|
4.3.3 Mie resonances in nanoscale resonators |
|
|
134 | (2) |
|
4.3.4 Dielectric resonators versus plasmonic resonators |
|
|
136 | (1) |
|
4.4 Nanoantenna fabrication |
|
|
137 | (3) |
|
4.4.1 Top-down approaches |
|
|
137 | (3) |
|
4.4.2 Bottom-up approaches |
|
|
140 | (1) |
|
4.5 Optical characterisation of nanoantennas |
|
|
140 | (1) |
|
|
141 | (10) |
|
4.6.1 Localised field enhancement |
|
|
141 | (3) |
|
|
144 | (2) |
|
4.6.3 Integrated photonics |
|
|
146 | (1) |
|
4.6.4 Planar optical components |
|
|
147 | (2) |
|
|
149 | (1) |
|
4.6.6 Selective thermal emission |
|
|
150 | (1) |
|
4.7 Conclusion and outlook |
|
|
151 | (1) |
|
|
152 | (9) |
5 Fundamental bounds and optimization of small antennas |
|
161 | (26) |
|
|
|
|
|
161 | (1) |
|
5.2 Stored energies and fundamental bounds for antenna analysis and design |
|
|
162 | (6) |
|
|
163 | (2) |
|
5.2.2 Qz' computation from current densities |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
168 | (5) |
|
|
169 | (4) |
|
5.3.2 Convex optimization |
|
|
173 | (1) |
|
|
173 | (8) |
|
5.4.1 Bent-end simple phone model |
|
|
173 | (3) |
|
5.4.2 Bent-end simple phone model-optimization for Qz' |
|
|
176 | (2) |
|
5.4.3 Wireless terminal antenna placement using optimum currents |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
181 | (6) |
6 Fast analysis of active antenna systems following the Deep Integration paradigm |
|
187 | (26) |
|
|
6.1 Introduction: The Deep Integration paradigm |
|
|
187 | (4) |
|
6.1.1 Potential impact and other integration approaches |
|
|
190 | (1) |
|
6.1.2 Scientific and technological challenges |
|
|
191 | (1) |
|
6.2 Modeling approach and assumptions |
|
|
191 | (2) |
|
6.3 The antennafier array element |
|
|
193 | (7) |
|
|
193 | (1) |
|
6.3.2 Method-of-moments analysis of a folded dipole antennafier |
|
|
194 | (6) |
|
6.4 Multiscale numerical analysis of an antennafier array |
|
|
200 | (9) |
|
6.4.1 The Characteristic Basis Function Method |
|
|
201 | (2) |
|
6.4.2 Generation of characteristic basis functions |
|
|
203 | (2) |
|
6.4.3 Numerical matrix compression and solution |
|
|
205 | (1) |
|
6.4.4 Active versus passive antenna array results |
|
|
206 | (3) |
|
|
209 | (1) |
|
|
210 | (3) |
7 Numerically efficient methods for electromagnetic modeling of antenna radiation and scattering problems |
|
213 | (46) |
|
|
|
|
213 | (2) |
|
7.2 Numerical analysis of multiple multi-scale objects using CBFM and IEDG |
|
|
215 | (6) |
|
7.2.1 Introduction to CBFM and IEDG |
|
|
215 | (2) |
|
7.2.2 MoM combined with CFIE |
|
|
217 | (2) |
|
7.2.3 Elements of impedance matrix of MoM |
|
|
219 | (2) |
|
7.3 Acceleration of electromagnetic analysis using CBFM |
|
|
221 | (14) |
|
|
221 | (1) |
|
7.3.2 Constructing CBFs by using multiple plane-wave excitation |
|
|
222 | (2) |
|
7.3.3 Generation of reduced matrix equation in the CBFM |
|
|
224 | (2) |
|
7.3.4 Multi-scale discretization using the IEDG method |
|
|
226 | (4) |
|
|
230 | (4) |
|
|
234 | (1) |
|
7.4 Analysis of scattering from objects embedded in layered media using the CBFM |
|
|
235 | (13) |
|
7.4.1 Introduction to CBFM analysis of the object embedded in layered media |
|
|
235 | (2) |
|
7.4.2 Mixed potential integral equation for objects embedded in layered media |
|
|
237 | (4) |
|
|
241 | (6) |
|
|
247 | (1) |
|
7.5 CBFM for microwave circuit and antenna problems |
|
|
248 | (6) |
|
|
248 | (1) |
|
|
248 | (3) |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (4) |
8 Statistical electromagnetics for antennas |
|
259 | (28) |
|
|
|
|
|
|
259 | (3) |
|
8.2 State of the art of variable antennas |
|
|
262 | (2) |
|
|
264 | (7) |
|
8.3.1 General approach and surrogate modeling |
|
|
264 | (2) |
|
|
266 | (1) |
|
8.3.3 Polynomial chaos expansion |
|
|
267 | (4) |
|
|
271 | (11) |
|
8.4.1 Case I: Split ring resonator |
|
|
271 | (7) |
|
8.4.2 Case II: Wearable textile antenna |
|
|
278 | (4) |
|
|
282 | (1) |
|
|
282 | (5) |
9 Ultra-wideband arrays |
|
287 | (36) |
|
|
|
9.1 Review of current UWB capabilities |
|
|
288 | (7) |
|
|
289 | (1) |
|
9.1.2 Fragmented aperture |
|
|
290 | (1) |
|
9.1.3 Connected and coupled arrays |
|
|
291 | (2) |
|
|
293 | (2) |
|
9.2 Basic model of a UWB TCDA and feed |
|
|
295 | (6) |
|
9.2.1 Modeling infinite coupled arrays |
|
|
295 | (2) |
|
9.2.2 Circuit model of the balun |
|
|
297 | (4) |
|
9.3 Considerations for planar UWB arrays |
|
|
301 | (12) |
|
|
301 | (1) |
|
9.3.2 Material and process selection |
|
|
302 | (1) |
|
9.3.3 Limitations of PCB processing |
|
|
302 | (1) |
|
|
303 | (6) |
|
|
309 | (4) |
|
9.4 Planar UWB arrays for millimeter-waves |
|
|
313 | (6) |
|
9.4.1 Development of a three-pin balun |
|
|
313 | (3) |
|
9.4.2 Sample design for 5G frequencies |
|
|
316 | (3) |
|
|
319 | (4) |
10 Reflectarray antennas |
|
323 | (38) |
|
|
|
|
323 | (1) |
|
10.2 Basic concepts on reflectarray antennas |
|
|
324 | (1) |
|
10.3 Elementary cells in reflectarrays |
|
|
325 | (9) |
|
10.4 Analysis and design of reflectarray antennas |
|
|
334 | (1) |
|
10.4.1 Analysis and design of reflectarray elements |
|
|
334 | (1) |
|
10.4.2 Design and analysis of reflectarray antenna |
|
|
334 | (1) |
|
10.5 Broadband techniques in reflectarrays |
|
|
335 | (5) |
|
10.6 Shaped and multi-beam reflectarrays |
|
|
340 | (2) |
|
10.7 Dual-reflector configurations |
|
|
342 | (2) |
|
10.8 Technological challenges |
|
|
344 | (7) |
|
10.8.1 Deployable and inflatable reflectarrays |
|
|
344 | (1) |
|
10.8.2 Reflectarrays and solar cells |
|
|
345 | (1) |
|
10.8.3 3-D printed reflectarrays |
|
|
346 | (1) |
|
10.8.4 Reflectarrays at terahertz and optical frequencies |
|
|
347 | (2) |
|
10.8.5 Liquid crystal reflectarrays |
|
|
349 | (1) |
|
10.8.6 Reflectarrays using graphene |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (10) |
11 Novel antenna concepts and developments for CubeSats |
|
361 | (23) |
|
|
|
|
|
361 | (2) |
|
11.2 Existing standards for small satellites |
|
|
363 | (1) |
|
11.3 Antenna requirements for CubeSats |
|
|
364 | (2) |
|
|
364 | (1) |
|
11.3.2 Antenna radiated power, gain, and radiation pattern |
|
|
365 | (1) |
|
|
366 | (1) |
|
11.4 Representative current antenna concepts for CubeSats |
|
|
366 | (1) |
|
11.5 Ka-band symmetric umbrella reflector antennas (up to 0.5 m) |
|
|
367 | (4) |
|
11.5.1 Antenna configuration |
|
|
369 | (1) |
|
11.5.2 Reflector surface characterization |
|
|
370 | (1) |
|
11.5.3 Deployment strategy |
|
|
370 | (1) |
|
11.6 Ka-band offset reflector antennas (up to 1 m and beyond) |
|
|
371 | (5) |
|
11.6.1 Reflector design and feed development |
|
|
373 | (1) |
|
11.6.2 Proposed deployment strategy |
|
|
374 | (2) |
|
11.7 Reflectarray concept |
|
|
376 | (4) |
|
11.7.1 Deployment and design |
|
|
377 | (1) |
|
11.7.2 Flight model performance |
|
|
378 | (2) |
|
11.8 Patch antennas integrated with solar panels |
|
|
380 | (4) |
|
11.8.1 Transparent (supersolar) patch antennas |
|
|
380 | (1) |
|
11.8.2 Nontransparent (subsolar) patch antennas |
|
|
381 | (3) |
|
|
384 | (1) |
Appendix A: Characterization of umbrella reflectors |
|
384 | (5) |
|
A.1 Mathematical representation of the gore surface |
|
|
385 | (1) |
|
A.2 Finding the optimum feed location |
|
|
385 | (2) |
|
A.3 Gain loss as a function of the number of gores |
|
|
387 | (2) |
Appendix B: Mesh characterization for deployable reflectors |
|
389 | (4) |
|
B.1 Simple wire grid model |
|
|
389 | (1) |
|
B.2 Equivalent wire grid model for complex knits |
|
|
390 | (3) |
Acknowledgement |
|
393 | (1) |
References |
|
393 | (10) |
Index |
|
403 | |