Atjaunināt sīkdatņu piekrišanu

E-grāmata: Developments in Antenna Analysis and Design, Volume 2

Edited by (University of Central Florida, USA)
  • Formāts: EPUB+DRM
  • Sērija : Electromagnetic Waves
  • Izdošanas datums: 14-Dec-2018
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785618918
  • Formāts - EPUB+DRM
  • Cena: 212,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Electromagnetic Waves
  • Izdošanas datums: 14-Dec-2018
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785618918

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments. It includes topics such as body-worn antennas, that play an important role as sensors for Internet of Things (IoT), and millimeter wave antennas that are vitally important for 5G devices. It also covers a wide frequency range that includes terahertz and optical frequencies. Additionally, it discusses topics such as theoretical bounds of antennas and aspects of statistical analysis that are not readily found in the existing literature.

This second volume covers the topics of: graphene-based antennas; millimeter-wave antennas; terahertz antennas; optical antennas; fundamental bounds of antennas; fast and numerically efficient techniques for analyzing antennas; statistical analysis of antennas; ultra-wideband arrays; reflectarrays; and antennas for small satellites, viz., CubeSats.

The first volume covers the theory of characteristic modes (TCM) and characteristic bases; wideband antenna element designs; MIMO antennas; antennas for wireless communication; reconfigurable antennas employing microfluidics; flexible and body-worn antennas; and antennas using meta–atoms and artificially-engineered materials, or metamaterials (MTMs).

The two volumes represent a unique combination of topics pertaining to antenna design and analysis, not found elsewhere. It is essential reading for the antenna community including designers, students, researchers, faculty engaged in teaching and research of antennas, and the users as well as decision makers.



Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments.

Preface xi
1 Terahertz antennas, metasurfaces and planar devices using graphene 1(38)
Michele Tamagnone
Santiago Capdevila Cascante
Juan R. Mosig
1.1 Introduction
1(2)
1.1.1 Graphene
2(1)
1.1.2 Outline
2(1)
1.2 2D materials in the framework of Maxwell's equations
3(3)
1.3 Graphene planar plasmonic antennas
6(7)
1.3.1 Fixed frequency plasmonic antennas
6(3)
1.3.2 Frequency-reconfigurable plasmonic antennas
9(2)
1.3.3 Graphene plasmonic antenna model
11(2)
1.4 Efficiency upper bounds in graphene tunable and non-reciprocal devices
13(9)
1.4.1 Generalized electric and magnetic field representation
14(1)
1.4.2 Demonstration of the upper bound
15(2)
1.4.3 Graphene figure of merit
17(2)
1.4.4 Device specific bounds
19(3)
1.5 Graphene terahertz non-reciprocal isolator
22(5)
1.5.1 Isolator working principle
23(1)
1.5.2 Measurements
24(3)
1.6 Graphene terahertz beam steering reflectarray prototype
27(5)
1.6.1 Working principle
28(1)
1.6.2 Design and measurement
29(3)
1.7 Conclusions
32(2)
Acknowledgments
34(1)
References
34(5)
2 Millimeter-wave antennas using printed-circuit-board and plated-through-hole technologies 39(34)
Kung Bo Ng
Dian Wang
Chi Hou Chan
2.1 Wideband MMW ME dipole antennas
40(13)
2.1.1 Single feed printed ME dipole antenna
40(7)
2.1.2 Differential feed printed ME dipole antenna
47(6)
2.2 HOM MMW patch antenna
53(9)
2.2.1 Wideband HOM patch element
53(5)
2.2.2 Differentially fed HOM patch antenna
58(4)
2.3 Wideband MMW complementary source antennas for 5G
62(8)
2.3.1 Linearly polarized antenna fed by an SIW
62(1)
2.3.2 Radiation mechanism of the wideband antenna
63(3)
2.3.3 Comparison of simulation and measurement results
66(4)
2.4 Conclusion
70(1)
Acknowledgment
71(1)
References
71(2)
3 THz photoconductive antennas 73(54)
Mingguang Tuo
Jitao Zhang
Hao Xin
3.1 Introduction of THz technology and photoconductive antenna
73(5)
3.1.1 Importance of THz technology
73(1)
3.1.2 THz generation
73(1)
3.1.3 Pulsed THz generation
74(1)
3.1.4 Photoconductive antenna
75(2)
3.1.5 Terahertz time-domain spectroscopy
77(1)
3.2 Theoretical modeling and numerical simulation
78(17)
3.2.1 Motivation and challenge
78(1)
3.2.2 Drude-Lorentz model
79(2)
3.2.3 Equivalent circuit model
81(2)
3.2.4 Full-wave model
83(4)
3.2.5 Simulation examples of full-wave model
87(8)
3.3 Experimental characterization of PCA component and system
95(24)
3.3.1 Far-field THz-TDS
95(16)
3.3.2 THz near-field microscopy
111(8)
3.4 Summary
119(1)
References
120(7)
4 Optical antennas 127(34)
Chengjun Zou
Withawat Withayachumnankul
Isabelle Staude
Christophe Fumeaux
4.1 Introduction
127(1)
4.2 Early history
128(1)
4.3 Theory and analysis
129(8)
4.3.1 Metal properties from microwave to optical frequencies
129(3)
4.3.2 Plasmonic effects
132(2)
4.3.3 Mie resonances in nanoscale resonators
134(2)
4.3.4 Dielectric resonators versus plasmonic resonators
136(1)
4.4 Nanoantenna fabrication
137(3)
4.4.1 Top-down approaches
137(3)
4.4.2 Bottom-up approaches
140(1)
4.5 Optical characterisation of nanoantennas
140(1)
4.6 Applications
141(10)
4.6.1 Localised field enhancement
141(3)
4.6.2 Sensing
144(2)
4.6.3 Integrated photonics
146(1)
4.6.4 Planar optical components
147(2)
4.6.5 Photodetection
149(1)
4.6.6 Selective thermal emission
150(1)
4.7 Conclusion and outlook
151(1)
References
152(9)
5 Fundamental bounds and optimization of small antennas 161(26)
Mats Gustafsson
Marius Cismasu
Doruk Tayli
5.1 Introduction
161(1)
5.2 Stored energies and fundamental bounds for antenna analysis and design
162(6)
5.2.1 Stored energies
163(2)
5.2.2 Qz' computation from current densities
165(2)
5.2.3 Fundamental bounds
167(1)
5.3 Antenna optimization
168(5)
5.3.1 Genetic algorithms
169(4)
5.3.2 Convex optimization
173(1)
5.4 Examples
173(8)
5.4.1 Bent-end simple phone model
173(3)
5.4.2 Bent-end simple phone model-optimization for Qz'
176(2)
5.4.3 Wireless terminal antenna placement using optimum currents
178(3)
5.5 Conclusions
181(1)
References
181(6)
6 Fast analysis of active antenna systems following the Deep Integration paradigm 187(26)
Rob Maaskant
6.1 Introduction: The Deep Integration paradigm
187(4)
6.1.1 Potential impact and other integration approaches
190(1)
6.1.2 Scientific and technological challenges
191(1)
6.2 Modeling approach and assumptions
191(2)
6.3 The antennafier array element
193(7)
6.3.1 Concept
193(1)
6.3.2 Method-of-moments analysis of a folded dipole antennafier
194(6)
6.4 Multiscale numerical analysis of an antennafier array
200(9)
6.4.1 The Characteristic Basis Function Method
201(2)
6.4.2 Generation of characteristic basis functions
203(2)
6.4.3 Numerical matrix compression and solution
205(1)
6.4.4 Active versus passive antenna array results
206(3)
6.5 Conclusions
209(1)
References
210(3)
7 Numerically efficient methods for electromagnetic modeling of antenna radiation and scattering problems 213(46)
Yang Su
Raj Mittra
7.1 Introduction
213(2)
7.2 Numerical analysis of multiple multi-scale objects using CBFM and IEDG
215(6)
7.2.1 Introduction to CBFM and IEDG
215(2)
7.2.2 MoM combined with CFIE
217(2)
7.2.3 Elements of impedance matrix of MoM
219(2)
7.3 Acceleration of electromagnetic analysis using CBFM
221(14)
7.3.1 Partition of CBFM
221(1)
7.3.2 Constructing CBFs by using multiple plane-wave excitation
222(2)
7.3.3 Generation of reduced matrix equation in the CBFM
224(2)
7.3.4 Multi-scale discretization using the IEDG method
226(4)
7.3.5 Numerical results
230(4)
7.3.6 Summary
234(1)
7.4 Analysis of scattering from objects embedded in layered media using the CBFM
235(13)
7.4.1 Introduction to CBFM analysis of the object embedded in layered media
235(2)
7.4.2 Mixed potential integral equation for objects embedded in layered media
237(4)
7.4.3 Numerical results
241(6)
7.4.4 Summary
247(1)
7.5 CBFM for microwave circuit and antenna problems
248(6)
7.5.1 Introduction
248(1)
7.5.2 SVD-based CBFM
248(3)
7.5.3 Numerical results
251(3)
7.5.4 Summary
254(1)
7.6 Conclusions
254(1)
Acknowledgment
254(1)
List of acronyms
254(1)
References
255(4)
8 Statistical electromagnetics for antennas 259(28)
Hulusi Acikgoz
Ravi Kumar Arya
Joe Wiart
Raj Mittra
8.1 Introduction
259(3)
8.2 State of the art of variable antennas
262(2)
8.3 Statistical methods
264(7)
8.3.1 General approach and surrogate modeling
264(2)
8.3.2 MC simulations
266(1)
8.3.3 Polynomial chaos expansion
267(4)
8.4 Case studies
271(11)
8.4.1 Case I: Split ring resonator
271(7)
8.4.2 Case II: Wearable textile antenna
278(4)
8.5 Conclusions
282(1)
References
282(5)
9 Ultra-wideband arrays 287(36)
Markus H. Novak
John L. Volakis
9.1 Review of current UWB capabilities
288(7)
9.1.1 Tapered slot
289(1)
9.1.2 Fragmented aperture
290(1)
9.1.3 Connected and coupled arrays
291(2)
9.1.4 Material loading
293(2)
9.2 Basic model of a UWB TCDA and feed
295(6)
9.2.1 Modeling infinite coupled arrays
295(2)
9.2.2 Circuit model of the balun
297(4)
9.3 Considerations for planar UWB arrays
301(12)
9.3.1 Feed planarization
301(1)
9.3.2 Material and process selection
302(1)
9.3.3 Limitations of PCB processing
302(1)
9.3.4 Surface waves
303(6)
9.3.5 Cavity resonance
309(4)
9.4 Planar UWB arrays for millimeter-waves
313(6)
9.4.1 Development of a three-pin balun
313(3)
9.4.2 Sample design for 5G frequencies
316(3)
References
319(4)
10 Reflectarray antennas 323(38)
Eduardo Carrasco
Jose A. Encinar
10.1 Introduction
323(1)
10.2 Basic concepts on reflectarray antennas
324(1)
10.3 Elementary cells in reflectarrays
325(9)
10.4 Analysis and design of reflectarray antennas
334(1)
10.4.1 Analysis and design of reflectarray elements
334(1)
10.4.2 Design and analysis of reflectarray antenna
334(1)
10.5 Broadband techniques in reflectarrays
335(5)
10.6 Shaped and multi-beam reflectarrays
340(2)
10.7 Dual-reflector configurations
342(2)
10.8 Technological challenges
344(7)
10.8.1 Deployable and inflatable reflectarrays
344(1)
10.8.2 Reflectarrays and solar cells
345(1)
10.8.3 3-D printed reflectarrays
346(1)
10.8.4 Reflectarrays at terahertz and optical frequencies
347(2)
10.8.5 Liquid crystal reflectarrays
349(1)
10.8.6 Reflectarrays using graphene
349(2)
10.9 Conclusions
351(1)
Acknowledgement
351(1)
References
351(10)
11 Novel antenna concepts and developments for CubeSats 361(23)
Yahya Rahmat-Samii
Vignesh Manohar
Joshua M. Kovitz
11.1 Introduction
361(2)
11.2 Existing standards for small satellites
363(1)
11.3 Antenna requirements for CubeSats
364(2)
11.3.1 Frequency
364(1)
11.3.2 Antenna radiated power, gain, and radiation pattern
365(1)
11.3.3 Antenna material
366(1)
11.4 Representative current antenna concepts for CubeSats
366(1)
11.5 Ka-band symmetric umbrella reflector antennas (up to 0.5 m)
367(4)
11.5.1 Antenna configuration
369(1)
11.5.2 Reflector surface characterization
370(1)
11.5.3 Deployment strategy
370(1)
11.6 Ka-band offset reflector antennas (up to 1 m and beyond)
371(5)
11.6.1 Reflector design and feed development
373(1)
11.6.2 Proposed deployment strategy
374(2)
11.7 Reflectarray concept
376(4)
11.7.1 Deployment and design
377(1)
11.7.2 Flight model performance
378(2)
11.8 Patch antennas integrated with solar panels
380(4)
11.8.1 Transparent (supersolar) patch antennas
380(1)
11.8.2 Nontransparent (subsolar) patch antennas
381(3)
11.9 Conclusion
384(1)
Appendix A: Characterization of umbrella reflectors 384(5)
A.1 Mathematical representation of the gore surface
385(1)
A.2 Finding the optimum feed location
385(2)
A.3 Gain loss as a function of the number of gores
387(2)
Appendix B: Mesh characterization for deployable reflectors 389(4)
B.1 Simple wire grid model
389(1)
B.2 Equivalent wire grid model for complex knits
390(3)
Acknowledgement 393(1)
References 393(10)
Index 403
Raj Mittra is a Life Fellow of the IEEE, a Past-President of AP-S, and has served as the Editor of Transactions of the Antennas and Propagation Society. He won the Guggenheim Fellowship Award in 1965, the IEEE Centennial Medal in 1984, the IEEE Millennium medal in 2000, the IEEE/AP-S Distinguished Achievement Award in 2002, the AP-S Chen-To Tai Distinguished Educator Award in 2004 and the IEEE Electromagnetics Award in 2006. He has published over 970 journal and symposium papers and more than 40 books or book chapters on various topics related to electromagnetics, antennas, microwaves and electronic packaging. He also has three patents on communication antennas to his credit.