Atjaunināt sīkdatņu piekrišanu

E-grāmata: Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance

(BAE Systems, UK), (University of South Australia), (University of Liverpool, UK), (MIT)
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Series
  • Izdošanas datums: 20-Mar-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119168492
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 122,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Sērija : Aerospace Series
  • Izdošanas datums: 20-Mar-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119168492
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems.

The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented.

Key features:

  • Presents new developments and how they relate to established control systems knowledge. 
  • Demonstrates the theory through simulation examples and models.
  • Covers two-party and multi-party game theory and guidance.
  • Accompanied by a website hosting MATLAB® code.

The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.

Preface xi
Acknowledgments xiii
About the Companion Website xv
1 Differential Game Theory and Applications to Missile Guidance
1(15)
Nomenclature
1(1)
Abbreviations
2(1)
1.1 Introduction
2(1)
1.1.1 Need for Missile Guidance---Past, Present, and Future
2(1)
1.2 Game Theoretic Concepts and Definitions
3(1)
1.3 Game Theory Problem Examples
4(4)
1.3.1 Prisoner's Dilemma
4(2)
1.3.2 The Game of Tic-Tac-Toe
6(2)
1.4 Game Theory Concepts Generalized
8(2)
1.4.1 Discrete-Time Game
8(1)
1.4.2 Continuous-Time Differential Game
9(1)
1.5 Differential Game Theory Application to Missile Guidance
10(1)
1.6 Two-Party and Three-Party Pursuit-Evasion Game
11(1)
1.7 Book
Chapter Summaries
11(5)
1.7.1 A Note on the Terminology Used In the Book
13(1)
References
14(2)
2 Optimum Control and Differential Game Theory
16(47)
Nomenclature
16(1)
Abbreviations
17(1)
2.1 Introduction
17(1)
2.2 Calculus of Optima (Minimum or Maximum) for a Function
18(5)
2.2.1 On the Existence of the Necessary and Sufficient Conditions for an Optima
18(1)
2.2.2 Steady State Optimum Control Problem with Equality Constraints Utilizing Lagrange Multipliers
19(3)
2.2.3 Steady State Optimum Control Problem for a Linear System with Quadratic Cost Function
22(1)
2.3 Dynamic Optimum Control Problem
23(15)
2.3.1 Optimal Control with Initial and Terminal Conditions Specified
23(2)
2.3.2 Boundary (Transversality) Conditions
25(4)
2.3.3 Sufficient Conditions for Optimality
29(1)
2.3.4 Continuous Optimal Control with Fixed Initial Condition and Unspecified Final Time
30(5)
2.3.5 A Further Property of the Hamiltonian
35(1)
2.3.6 Continuous Optimal Control with Inequality Control Constraints---the Pontryagin's Minimum (Maximum) Principle
36(2)
2.4 Optimal Control for a Linear Dynamical System
38(2)
2.4.1 The LQPI Problem-Fixed Final Time
38(2)
2.5 Optimal Control Applications in Differential Game Theory
40(10)
2.5.1 Two-Party Game Theoretic Guidance for Linear Dynamical Systems
41(3)
2.5.2 Three-Party Game Theoretic Guidance for Linear Dynamical Systems
44(6)
2.6 Extension of the Differential Game Theory to Multi-Party Engagement
50(1)
2.7 Summary and Conclusions
50(13)
References
51(2)
Appendix
53(10)
3 Differential Game Theory Applied to Two-Party Missile Guidance Problem
63(39)
Nomenclature
63(1)
Abbreviations
64(1)
3.1 Introduction
64(3)
3.2 Development of the Engagement Kinematics Model
67(3)
3.2.1 Relative Engage Kinematics of n Versus m Vehicles
68(1)
3.2.2 Vector/Matrix Representation
69(1)
3.3 Optimum Interceptor/Target Guidance for a Two-Party Game
70(5)
3.3.1 Construction of the Differential Game Performance Index
70(2)
3.3.2 Weighting Matrices S, RP, Re
72(1)
3.3.3 Solution of the Differential Game Guidance Problem
73(2)
3.4 Solution of the Riccati Differential Equations
75(4)
3.4.1 Solution of the Matrix Riccati Differential Equations (MRDE)
75(1)
3.4.2 State Feedback Guidance Gains
76(1)
3.4.3 Solution of the Vector Riccati Differential Equations (VRDE)
77(1)
3.4.4 Analytical Solution of the VRDE for the Special Case
78(1)
3.4.5 Mechanization of the Game Theoretic Guidance
79(1)
3.5 Extension of the Game Theory to Optimum Guidance
79(2)
3.6 Relationship with the Proportional Navigation (PN) and the Augmented PN Guidance
81(1)
3.7 Conclusions
82(20)
References
82(2)
Appendix
84(18)
4 Three-Party Differential Game Theory Applied to Missile Guidance Problem
102(23)
Nomenclature
102(1)
Abbreviations
103(1)
4.1 Introduction
103(1)
4.2 Engagement Kinematics Model
104(1)
4.2.1 Three-Party Engagement Scenario
105(1)
4.3 Three-Party Differential Game Problem and Solution
105(2)
4.4 Solution of the Riccati Differential Equations
107(9)
4.4.1 Solution of the Matrix Riccati Differential Equation (MRDE)
111(1)
4.4.2 Solution of the Vector Riccati Differential Equation (VRDE)
112(3)
4.4.3 Further Consideration of Performance Index (PI) Weightings
115(1)
4.4.4 Game Termination Criteria and Outcomes
116(1)
4.5 Discussion and Conclusions
116(9)
References
117(1)
Appendix
118(7)
5 Four Degrees-of-Freedom (DOF) Simulation Model for Missile Guidance and Control Systems
125(125)
Nomenclature
125(1)
Abbreviations
126(1)
5.1 Introduction
126(1)
5.2 Development of the Engagement Kinematics Model
126(4)
5.2.1 Translational Kinematics for Multi-Vehicle Engagement
126(2)
5.2.2 Vector/Matrix Representation
128(1)
5.2.3 Rotational Kinematics: Relative Range, Range Rates, Sightline Angles, and Rates
128(2)
5.3 Vehicle Navigation Model
130(3)
5.3.1 Application of Quaternion to Navigation
131(2)
5.4 Vehicle Body Angles and Flight Path Angles
133(2)
5.4.1 Computing Body Rates (pi, qi, ri)
134(1)
5.5 Vehicle Autopilot Dynamics
135(1)
5.6 Aerodynamic Considerations
135(1)
5.7 Conventional Guidance Laws
136(2)
5.7.1 Proportional Navigation (PN) Guidance
136(1)
5.7.2 Augmented Proportional Navigation (APN) Guidance
137(1)
5.7.3 Optimum Guidance and Game Theory--Based Guidance
137(1)
5.8 Overall State Space Model
138(1)
5.9 Conclusions
138(112)
References
139(1)
Appendix
140(10)
6 Three-Party Differential Game Missile Guidance Simulation Study
150(1)
Nomenclature
150(1)
Abbreviations
150(1)
6.1 Introduction
151(1)
6.2 Engagement Kinematics Model
151(3)
6.3 Game Theory Problem and the Solution
154(3)
6.4 Discussion of the Simulation Results
157(1)
6.4.1 Game Theory Guidance Demonstrator Simulation
157(3)
6.4.2 Game Theory Guidance Simulation Including Disturbance Inputs
160(2)
6.5 Conclusions
162(1)
6.5.1 Useful Future Studies
162(1)
References 163(1)
Appendix 164(1)
Addendum 165(24)
Index 189
Farhan A. Faruqi, Defence Science and Technology Organisation, Australia Professor Dr. Farhan A. Faruqi is the Head of the Intelligent Autonomous Systems Research Guidance and Control Group in the Defence Science and Technology Organisation in Australia. He is also an Adjunct Professor at the University of South Australia. His main areas of expertise include autonomous systems navigation; guidance and control; target tracking; and intelligent autonomous systems. He has more than twenty years' experience in the Aerospace and Defence Industry in the UK, USA, and Australia.