Atjaunināt sīkdatņu piekrišanu

E-grāmata: Differentially Flat Systems

(University of Delaware, Newark, USA),
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 350,64 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Illustrating the power, simplicity, and generality of the concept of flatness, this reference explains how to identify, utilize, and apply flatness in system planning and design. The book includes a large assortment of exercises and models that range from elementary to complex classes of systems. Leading students and professionals through a vast array of designs, simulations, and analytical studies on the traditional uses of flatness, Differentially Flat Systems contains an extensive amount of examples that showcase the value of flatness in system design, demonstrate how flatness can be assessed in the context of perturbed systems and apply static and dynamic feedback controller design techniques.
Series Introduction iii
Preface v
Acknowledgments xi
1 Introduction
1(10)
2 Linear Time-Invariant SISO Systems
11(58)
2.1 Introduction
11(1)
2.2 Systems in Transfer Function Form
12(4)
2.3 A Relation with the Behavioral Approach
16(1)
2.4 Systems in State Space Form
17(11)
2.5 The Non-Minimum Phase Issue
28(5)
2.6 Uses of the Differential Parametrization
33(16)
2.7 The Issue of Additive External Perturbations
49(8)
2.8 Historical Notes and References
57(1)
2.9 Problems
57(12)
3 Linear Time-Invariant MEMO Systems
69(32)
3.1 Introduction
69(1)
3.2 Systems in Polynomial Matrix Representation
70(4)
3.3 Systems in Rational Transfer Matrix Representation
74(9)
3.4 Non-square Systems in Polynomial Matrix Description
83(1)
3.5 Systems in State Space Representation
84(11)
3.6 Historical Notes and References
95(1)
3.7 Problems
95(6)
4 Time-Varying Linear Systems
101(36)
4.1 Introduction
101(1)
4.2 Flatness of SISO Time-Varying Linear Systems
102(6)
4.3 Trajectory Tracking in Nonlinear Systems
108(13)
4.4 Flatness of MIMO Time-Varying Linear Systems
121(5)
4.5 The Non-Uniformly Controllable Case
126(4)
4.6 Historical Notes and References
130(1)
4.7 Problems
130(7)
5 Discrete-Time Linear Systems
137(32)
5.1 Introduction
137(1)
5.2 Systems in Transfer Function Form
137(7)
5.3 The Non-Minimum Phase Case
144(2)
5.4 Linear SISO Controllable Systems in State Form
146(15)
5.5 A Shape Control Problem in a Rolling Mill
161(2)
5.6 Historical Notes and References
163(1)
5.7 Problems
164(5)
6 Infinite Dimensional Linear Systems
169(22)
6.1 Introduction
169(1)
6.2 Linear Delay Differential Systems
170(5)
6.3 Systems Described by Partial Differential Equations
175(12)
6.4 Historical Notes and References
187(4)
7 SISO Nonlinear Systems
191(30)
7.1 Introduction
191(1)
7.2 Definitions
192(2)
7.3 Feedback Linearizable SISO Systems
194(6)
7.4 Some General Results on the Flatness of SISO Nonlinear Systems
200(2)
7.5 The Flatness Property in the Analysis of Nonlinear Systems
202(4)
7.6 Tracking Arbitrary Trajectories
206(8)
7.7 Finding the Flat Output
214(7)
8 Multivariable Nonlinear Systems
221(48)
8.1 Introduction
221(1)
8.2 Systems Linearizable by Static State Feedback
221(8)
8.3 Systems Linearizable by Dynamic Feedback
229(22)
8.4 Some General Results for MIMO Systems
251(4)
8.5 An Alternative View of Flatness
255(2)
8.6 Historical Notes and References
257(1)
8.7 Problems
258(11)
9 Mobile Robots
269(54)
9.1 Introduction
269(1)
9.2 Modelling Nonholonomic Cars
270(14)
9.3 Flatness Based Control of a Non-Holonomic Car
284(3)
9.4 The PPR Planar Robot
287(9)
9.5 The Hovercraft System
296(11)
9.6 The Walking Toy
307(7)
9.7 Historical Notes and References
314(1)
9.8 Problems
314(9)
10 Flatness and Optimal Trajectories 323(54)
10.1 Introduction
323(2)
10.2 Functionals of a Single Function
325(4)
10.3 Functionals of n Functions
329(4)
10.4 Functionals with Higher Derivatives
333(5)
10.5 Functionals with Constraints
338(4)
10.6 Trajectory Optimization Problems
342(14)
10.7 Higher-Order or Differentially Flat Forms
356(14)
10.8 Historical Notes
370(2)
10.9 Problems
372(5)
11 Optimal Planning with Constraints 377(34)
11.1 First-Order Systems with Inequalities
377(6)
11.2 Higher-Order Systems with Inequalities
383(5)
11.3 Numerical Solution via Nonlinear Programming
388(8)
11.4 Feasible Planning in Near Real-Time
396(12)
11.5 Historical Notes
408(3)
12 Non-Differentially Flat Systems 411(50)
12.1 Introduction
411(1)
12.2 Liouvillian Systems
411(2)
12.3 Fuel Consumption in a Car
413(3)
12.4 The Monge Equation
416(1)
12.5 The Variable Length Pendulum
417(7)
12.6 A Simplified Model of a Helicopter
424(6)
12.7 The Underactuated Ship
430(8)
12.8 The Soft Landing Problem
438(7)
12.9 A High Frequency Control Approach
445(7)
12.10 Some Other Non-Differentially Flat Systems
452(3)
12.11 Historical Notes and References
455(1)
12.12 Problems
455(6)
Index 461
Hebertt Sira-Ramķrez, Sunil K. Agrawal