Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electrical Energy Conversion and Transport: An Interactive Computer-Based Approach

(Arizona State University), (Arizona State University)
  • Formāts - EPUB+DRM
  • Cena: 155,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Karady electrical engineering) and Holbert (nuclear engineering, both Arizona State U.) present a textbook for an undergraduate course of one or two semesters on the fundamental concepts of electric energy conversion and transport for students of electrical engineering. They take advantage of students having access to computers, and acknowledge that students are now active learners rather than passive listeners. This second edition has a new chapter on electric power generation. Other topics include electric power systems, three-phase circuits, electromechanical energy conversion, synchronous machines, and direct-current machines. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage

This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry.

The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use modern computation techniques to analyze electrical systems and understand the theory of electrical energy conversion. It includes new content that explores different power production methods, such as renewable energy sources (solar, wind, geothermal and ocean), as well as new sections that discuss the upcoming Smart Grid and distributed power generation using renewable energy conversion.

Complete with a Solutions Manual and the use of Mathcad, MATLAB, and PSpice throughout for problem solving, Electrical Energy Conversion and Transport offers chapter coverage of:

  • Electric Power Systems
  • Single-Phase Circuits
  • Transmission Lines
  • Transformers
  • Induction Machines
  • Introduction to Power Electronics and Motor Control
  • Electric Generating Stations
  • Three-Phase Circuits
  • Electromechanical Energy Conversion
  • Synchronous Machines
  • DC Machines

This book is essential reading material for students and practicing engineers in the power industry who would like to learn computer-based electrical energy conversion and transport at their own pace.

Recenzijas

This book is recommended reading for those interested in deepening their knowledge of electrical systems, energy conversion technologies, and the use of computer tools to assist in understanding of complex engineering problems.  (IEEE Power Electronics Society Newsletter, 1 August2013)

Preface and Acknowledgments xv
1 Electric Power Systems 1(29)
1.1 Electric Networks
2(4)
1.1.1 Transmission Systems
4(2)
1.1.2 Distribution Systems
6(1)
1.2 Traditional Transmission Systems
6(14)
1.2.1 Substation Components
8(1)
1.2.2 Substations and Equipment
9(8)
1.2.3 Gas Insulated Switchgear
17(1)
1.2.4 Power System Operation in Steady-State Conditions
18(2)
1.2.5 Network Dynamic Operation (Transient Condition)
20(1)
1.3 Traditional Distribution Systems
20(6)
1.3.1 Distribution Feeder
21(3)
1.3.2 Residential Electrical Connection
24(2)
1.4 Intelligent Electrical Grids
26(2)
1.4.1 Intelligent High-Voltage Transmission Systems
26(2)
1.4.2 Intelligent Distribution Networks
28(1)
1.5 Exercises
28(1)
1.6 Problems
29(1)
2 Electric Generating Stations 30(59)
2.1 Fossil Power Plants
34(15)
2.1.1 Fuel Storage and Handling
34(1)
2.1.2 Boiler
35(6)
2.1.3 Turbine
41(2)
2.1.4 Generator and Electrical System
43(4)
2.1.5 Combustion Turbine
47(1)
2.1.6 Combined Cycle Plants
48(1)
2.2 Nuclear Power Plants
49(7)
2.2.1 Nuclear Reactor
50(3)
2.2.2 Pressurized Water Reactor
53(2)
2.2.3 Boiling Water Reactor
55(1)
2.3 Hydroelectric Power Plants
56(7)
2.3.1 Low Head Hydroplants
59(1)
2.3.2 Medium- and High-Head Hydroplants
60(2)
2.3.3 Pumped Storage Facility
62(1)
2.4 Wind Farms
63(3)
2.5 Solar Power Plants
66(6)
2.5.1 Photovoltaics
66(4)
2.5.2 Solar Thermal Plants
70(2)
2.6 Geothermal Power Plants
72(1)
2.7 Ocean Power
73(3)
2.7.1 Ocean Tidal
74(1)
2.7.2 Ocean Current
75(1)
2.7.3 Ocean Wave
75(1)
2.7.4 Ocean Thermal
76(1)
2.8 Other Generation Schemes
76(1)
2.9 Electricity Generation Economics
77(4)
2.9.1 O&M Cost
79(1)
2.9.2 Fuel Cost
79(1)
2.9.3 Capital Cost
80(1)
2.9.4 Overall Generation Costs
81(1)
2.10 Load Characteristics and Forecasting
81(4)
2.11 Environmental Impact
85(1)
2.12 Exercises
86(1)
2.13 Problems
86(3)
3 Single-Phase Circuits 89(56)
3.1 Circuit Analysis Fundamentals
90(4)
3.1.1 Basic Definitions and Nomenclature
90(1)
3.1.2 Voltage and Current Phasors
91(1)
3.1.3 Power
92(2)
3.2 AC Circuits
94(2)
3.3 Impedance
96(13)
3.3.1 Series Connection
100(1)
3.3.2 Parallel Connection
100(4)
3.3.3 Impedance Examples
104(5)
3.4 Loads
109(7)
3.4.1 Power Factor
111(5)
3.4.2 Voltage Regulation
116(1)
3.5 Basic Laws and Circuit Analysis Techniques
116(12)
3.5.1 Kirchhoff's Current Law
117(6)
3.5.2 Kirchhoff's Voltage Law
123(4)
3.5.3 Thevenin's and Norton's Theorems
127(1)
3.6 Applications of Single-Phase Circuit Analysis
128(12)
3.7 Summary
140(1)
3.8 Exercises
141(1)
3.9 Problems
141(4)
4 Three-Phase Circuits 145(62)
4.1 Three-Phase Quantities
146(5)
4.2 Wye-Connected Generator
151(4)
4.3 Wye-Connected Loads
155(7)
4.3.1 Balanced Wye Load (Four-Wire System)
156(2)
4.3.2 Unbalanced Wye Load (Four-Wire System)
158(2)
4.3.3 Wye-Connected Three-Wire System
160(2)
4.4 Delta-Connected System
162(6)
4.4.1 Delta-Connected Generator
162(1)
4.4.2 Balanced Delta Load
163(3)
4.4.3 Unbalanced Delta Load
166(2)
4.5 Summary
168(6)
4.6 Three-Phase Power Measurement
174(3)
4.6.1 Four-Wire System
175(1)
4.6.2 Three-Wire System
175(2)
4.7 Per-Unit System
177(5)
4.8 Symmetrical Components
182(6)
4.8.1 Calculation of Phase Voltages from Sequential Components
182(1)
4.8.2 Calculation of Sequential Components from Phase Voltages
183(1)
4.8.3 Sequential Components of Impedance Loads
184(4)
4.9 Application Examples
188(15)
4.10 Exercises
203(1)
4.11 Problems
204(3)
5 Transmission Lines And Cables 207(106)
5.1 Construction
208(7)
5.2 Components of the Transmission Lines
215(8)
5.2.1 Towers and Foundations
215(1)
5.2.2 Conductors
216(2)
5.2.3 Insulators
218(5)
5.3 Cables
223(1)
5.4 Transmission Line Electrical Parameters
224(1)
5.5 Magnetic Field Generated by Transmission Lines
225(14)
5.5.1 Magnetic Field Energy Content
229(1)
5.5.2 Single Conductor Generated Magnetic Field
230(3)
5.5.3 Complex Spatial Vector Mathematics
233(1)
5.5.4 Three-Phase Transmission Line-Generated Magnetic Field
234(5)
5.6 Transmission Line Inductance
239(10)
5.6.1 External Magnetic Flux
240(1)
5.6.2 Internal Magnetic Flux
241(2)
5.6.3 Total Conductor Magnetic Flux
243(1)
5.6.4 Three-Phase Line Inductance
244(5)
5.7 Transmission Line Capacitance
249(24)
5.7.1 Electric Field Generation
249(1)
5.7.2 Electrical Field around a Conductor
250(6)
5.7.3 Three-Phase Transmission Line Generated Electric Field
256(15)
5.7.4 Three-Phase Line Capacitance
271(2)
5.8 Transmission Line Networks
273(9)
5.8.1 Equivalent Circuit for a Balanced System
273(4)
5.8.2 Long Transmission Lines
277(5)
5.9 Concept of Transmission Line Protection
282(7)
5.9.1 Transmission Line Faults
282(3)
5.9.2 Protection Methods
285(1)
5.9.3 Fuse Protection
285(1)
5.9.4 Overcurrent Protection
285(3)
5.9.5 Distance Protection
288(1)
5.10 Application Examples
289(18)
5.10.1 Mathcad® Examples
289(13)
5.10.2 PSpice®: Transient Short-Circuit Current in Transmission Lines
302(2)
5.10.3 PSpice: Transmission Line Energization
304(3)
5.11 Exercises
307(1)
5.12 Problems
308(5)
6 Electromechanical Energy Conversion 313(62)
6.1 Magnetic Circuits
314(22)
6.1.1 Magnetic Circuit Theory
315(2)
6.1.2 Magnetic Circuit Analysis
317(6)
6.1.3 Magnetic Energy
323(1)
6.1.4 Magnetization Curve
324(5)
6.1.5 Magnetization Curve Modeling
329(7)
6.2 Magnetic and Electric Field Generated Forces
336(7)
6.2.1 Electric Field-Generated Force
336(1)
6.2.2 Magnetic Field-Generated Force
337(6)
6.3 Electromechanical System
343(4)
6.3.1 Electric Field
344(1)
6.3.2 Magnetic Field
345(2)
6.4 Calculation of Electromagnetic Forces
347(5)
6.5 Applications
352(16)
6.5.1 Actuators
353(3)
6.5.2 Transducers
356(6)
6.5.3 Permanent Magnet Motors and Generators
362(3)
6.5.4 Microelectromechanical Systems
365(3)
6.6 Summary
368(1)
6.7 Exercises
368(1)
6.8 Problems
369(6)
7 Transformers 375(81)
7.1 Construction
376(5)
7.2 Single-Phase Transformers
381(27)
7.2.1 Ideal Transformer
382(9)
7.2.2 Real Transformer
391(8)
7.2.3 Determination of Equivalent Transformer Circuit Parameters
399(9)
7.3 Three-Phase Transformers
408(42)
7.3.1 Wye-Wye Connection
410(5)
7.3.2 Wye-Delta Connection
415(3)
7.3.3 Delta-Wye Connection
418(2)
7.3.4 Delta-Delta Connection
420(1)
7.3.5 Summary
420(1)
7.3.6 Analysis of Three-Phase Transformer Configurations
421(8)
7.3.7 Equivalent Circuit Parameters of a Three-Phase Transformer
429(3)
7.3.8 General Program for Computing Transformer Parameters
432(3)
7.3.9 Application Examples
435(12)
7.3.10 Concept of Transformer Protection
447(3)
7.4 Exercises
450(1)
7.5 Problems
451(5)
8 Synchronous Machines 456(85)
8.1 Construction
456(9)
8.1.1 Round Rotor Generator
457(2)
8.1.2 Salient Pole Generator
459(3)
8.1.3 Exciter
462(3)
8.2 Operating Concept
465(7)
8.2.1 Main Rotating Flux
465(3)
8.2.2 Armature Flux
468(4)
8.3 Generator Application
472(15)
8.3.1 Loading
472(1)
8.3.2 Reactive Power Regulation
472(1)
8.3.3 Synchronization
473(1)
8.3.4 Static Stability
474(13)
8.4 Induced Voltage and Armature Reactance Calculation
487(20)
8.4.1 Induced Voltage Calculation
488(8)
8.4.2 Armature Reactance Calculation
496(11)
8.5 Concept of Generator Protection
507(4)
8.6 Application Examples
511(24)
8.7 Exercises
535(1)
8.8 Problems
536(5)
9 Induction Machines 541(75)
9.1 Introduction
541(2)
9.2 Construction
543(4)
9.2.1 Stator
543(3)
9.2.2 Rotor
546(1)
9.3 Three-Phase Induction Motor
547(44)
9.3.1 Operating Principle
547(6)
9.3.2 Equivalent Circuit
553(3)
9.3.3 Motor Performance
556(1)
9.3.4 Motor Maximum Output
557(3)
9.3.5 Performance Analyses
560(10)
9.3.6 Determination of Motor Parameters by Measurement
570(21)
9.4 Single-Phase Induction Motor
591(12)
9.4.1 Operating Principle
592(3)
9.4.2 Single-Phase Induction Motor Performance Analysis
595(8)
9.5 Induction Generators
603(5)
9.5.1 Induction Generator Analysis
603(3)
9.5.2 Doubly Fed Induction Generator
606(2)
9.6 Concept of Motor Protection
608(2)
9.7 Exercises
610(1)
9.8 Problems
611(5)
10 DC Machines 616(57)
10.1 Construction
616(4)
10.2 Operating Principle
620(9)
10.2.1 DC Motor
620(3)
10.2.2 DC Generator
623(2)
10.2.3 Equivalent Circuit
625(3)
10.2.4 Excitation Methods
628(1)
10.3 Operation Analyses
629(23)
10.3.1 Separately Excited Machine
630(7)
10.3.2 Shunt Machine
637(8)
10.3.3 Series Motor
645(6)
10.3.4 Summary
651(1)
10.4 Application Examples
652(17)
10.5 Exercises
669(1)
10.6 Problems
669(4)
11 Introduction To Power Electronics And Motor Control 673(104)
11.1 Concept of DC Motor Control
674(4)
11.2 Concept of AC Induction Motor Control
678(7)
11.3 Semiconductor Switches
685(12)
11.3.1 Diode
685(2)
11.3.2 Thyristor
687(5)
11.3.3 Gate Turn-Off Thyristor
692(1)
11.3.4 Metal-Oxide-Semiconductor Field-Effect Transistor
693(2)
11.3.5 Insulated Gate Bipolar Transistor
695(1)
11.3.6 Summary
696(1)
11.4 Rectifiers
697(32)
11.4.1 Simple Passive Diode Rectifiers
697(12)
11.4.2 Single-Phase Controllable Rectifiers
709(17)
11.4.3 Firing and Snubber Circuits
726(2)
11.4.4 Three-Phase Rectifiers
728(1)
11.5 Inverters
729(10)
11.5.1 Voltage Source Inverter with Pulse Width Modulation
732(3)
11.5.2 Line-Commutated Thyristor-Controlled Inverter
735(3)
11.5.3 High-Voltage DC Transmission
738(1)
11.6 Flexible AC Transmission
739(8)
11.6.1 Static VAR Compensator
740(4)
11.6.2 Static Synchronous Compensator
744(1)
11.6.3 Thyristor-Controlled Series Capacitor
744(3)
11.6.4 Unified Power Controller
747(1)
11.7 DC-to-DC Converters
747(10)
11.7.1 Boost Converter
748(6)
11.7.2 Buck Converter
754(3)
11.8 Application Examples
757(16)
11.9 Exercises
773(1)
11.10 Problems
774(3)
Appendix A Introduction to Mathcad® 777(17)
A.1 Worksheet and Toolbars
777(6)
A.1.1 Text Regions
780(1)
A.1.2 Calculations
780(3)
A.2 Functions
783(5)
A.2.1 Repetitive Calculations
784(1)
A.2.2 Defining a Function
785(1)
A.2.3 Plotting a Function
786(2)
A.2.4 Minimum and Maximum Function Values
788(1)
A.3 Equation Solvers
788(2)
A.3.1 Root Equation Solver
789(1)
A.3.2 Find Equation Solver
789(1)
A.4 Vectors and Matrices
790(4)
Appendix B Introduction to MATLAB® 794(11)
B.1 Desktop Tools
794(2)
B.2 Operators, Variables, and Functions
796(1)
B.3 Vectors and Matrices
797(2)
B.4 Colon Operator
799(1)
B.5 Repeated Evaluation of an Equation
799(1)
B.6 Plotting
800(3)
B.7 Basic Programming
803(2)
Appendix C Fundamental Units and Constants 805(5)
C.1 Fundamental Units
805(4)
C.2 Fundamental Physical Constants
809(1)
Appendix D Introduction to PSpice® 810(5)
D.1 Obtaining and Installing PSpice
810(1)
D.2 Using PSpice
811(4)
D.2.1 Creating a Circuit
811(1)
D.2.2 Simulating a Circuit
812(1)
D.2.3 Analyzing Simulation Results
813(2)
Problem Solution Key 815(7)
Bibliography 822(2)
Index 824
GEORGE G. KARADY received his doctorate in electrical engineering from the Budapest University of Technology and Economics in 1960. He also received an honorary doctorate from the Budapest University of Technology and Economics in 1996. He is currently the Chair Professor for the Salt River Project at Arizona State University.

KEITH E. HOLBERT earned his PhD in nuclear engineering at the University of Tennessee. He is presently the Director of the Nuclear Power Generation program in the School of Electrical, Computer and Energy Engineering at Arizona State University. He is a registered professional engineer and a senior member of the IEEE.