Atjaunināt sīkdatņu piekrišanu

Electrochemical Sensing: Carcinogens in Beverages 1st ed. 2016 [Hardback]

  • Formāts: Hardback, 148 pages, height x width: 235x155 mm, weight: 3672 g, 6 Illustrations, color; 115 Illustrations, black and white; XII, 148 p. 121 illus., 6 illus. in color., 1 Hardback
  • Sērija : Smart Sensors, Measurement and Instrumentation 20
  • Izdošanas datums: 17-May-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319326546
  • ISBN-13: 9783319326542
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 148 pages, height x width: 235x155 mm, weight: 3672 g, 6 Illustrations, color; 115 Illustrations, black and white; XII, 148 p. 121 illus., 6 illus. in color., 1 Hardback
  • Sērija : Smart Sensors, Measurement and Instrumentation 20
  • Izdošanas datums: 17-May-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319326546
  • ISBN-13: 9783319326542
Thisbook describes a robust, low-cost electrochemical sensing system that is able todetect hormones and phthalates - the most ubiquitous endocrine disruptorcompounds - in beverages and is sufficiently flexible to be readily coupledwith any existing chemical or biochemical sensing system. A novel type of silicon substrate-based smart interdigitaltransducer, developed usingMEMS semiconductor fabrication technology, is employed in conjunction with electrochemical impedance spectroscopy to allow real-time detection andanalysis. Furthermore, thepresented interdigital capacitive sensor design offers a sufficient penetrationdepth of the fringing electric field to permit bulk sample testing. The authorsaddress all aspects of the development of the system and fully explain its benefits.The book will be of wide interest to engineers, scientists, and researchersworking in the fields of physical electrochemistry and biochemistry at theundergraduate, postgraduate, and research lev

els. It will also be highly relevantfor practitioners and researchers involved in the development of electromagneticsensors.

Human Endocrine System and Hormonal Measurement.- ImpedanceSpectroscopy and Experimental Setup.- Novel Interdigital Sensors" Development.- Electrochemical Detection of Hormones.- Electrochemical Detection of Endocrine DisruptingCompounds.- Inducing Analyte Selectivity in the SensingSystem.- Portable Low-cost Testing Systemfor Phthalates" Detection.- Conclusions and FutureResearch.
1 Human Endocrine System and Hormonal Measurement
1(20)
1.1 Hormones and Endocrine-Disrupting Compounds
1(3)
1.2 Receptor--Ligand Binding Assays
4(6)
1.2.1 Radio Receptor Assay (RRA)
5(1)
1.2.2 Scintillation Proximity Assay (SPA)
5(1)
1.2.3 Fluorescence Resonance Energy Transfer (FRET)
6(1)
1.2.4 Fluorescence Polarization (FP)
7(1)
1.2.5 Fluorometric Microvolume Assay (FMAT)
8(1)
1.2.6 AlphaScreen™
8(1)
1.2.7 Flow Cytometry
9(1)
1.2.8 Fluorescence Correlation Spectroscopy (FCS)
9(1)
1.3 Immunoassay
10(7)
1.3.1 Surface Plasmon Resonance (SPR)
11(1)
1.3.2 Total Internal Reflection Fluorescence (TIRF)
12(1)
1.3.3 Ellipsometry
13(1)
1.3.4 Nuclear Magnetic Resonance Spectroscopy
13(1)
1.3.5 Amperometric Immunosensors
14(1)
1.3.6 Conductimetric Immunosensors
14(1)
1.3.7 Surface Acoustic Wave Immunosensors (SAW)
14(1)
1.3.8 Enzyme-Linked Immunosorbent Assay (ELISA)
15(2)
1.4 Conclusions
17(4)
References
17(4)
2 Impedance Spectroscopy and Experimental Setup
21(18)
2.1 Introduction
21(1)
2.2 Electrochemical Impedance Spectroscopy
21(11)
2.2.1 AC Bridges
22(1)
2.2.2 Lissajous Curves
22(1)
2.2.3 Fast Fourier Transforms (FFT)
22(1)
2.2.4 Phase Sensitive Detections (PSD)
23(1)
2.2.5 Frequency Response Analysis (FRA)
23(1)
2.2.6 Electrochemical Impedance Spectroscopy; Theory and Analyses
24(4)
2.2.7 `Nyquist' and `Bode' Plots for Impedance Data Analysis
28(1)
2.2.8 Randle's Electrochemical Cell Equivalent Circuit Model
28(4)
2.3 Experimental Setup
32(7)
2.3.1 Equipment and Instrumentations
33(1)
2.3.2 Fixture and Test Probe Connections
33(1)
2.3.3 RS-232C Interface for 3522-50/3532-50 LCR Hi Tester
34(1)
2.3.4 Conclusions
35(1)
References
36(3)
3 Novel Interdigital Sensors' Development
39(36)
3.1 Introduction to Interdigital Sensors
39(2)
3.2 Novel Planar Interdigital Sensors
41(1)
3.3 Finite Element Modelling Using COMSOL Multiphysics®
42(7)
3.4 Sensors' Fabrication
49(7)
3.5 Sensors' Profiling and Problem Definition
56(1)
3.5.1 Connection Pads Soldering
56(1)
3.6 Performance Evaluation
57(1)
3.6.1 Experimental Evaluation
57(1)
3.7 Achieving Stability in Sensors' Performance
58(14)
3.7.1 Post-fabrication Anneal of ID Sensor
60(2)
3.7.2 Results' Validation
62(1)
3.7.3 Complex Nonlinear Least Squares Curve Fitting
62(4)
3.7.4 Principal Component Analysis (PCA)
66(1)
3.7.5 PCA Analysis---EC1 (30--90 °C) Anneal
67(1)
3.7.6 PCA Analysis---EC2 (91--150 °C) Anneal
68(2)
3.7.7 PCA Analysis---EC3 (151--210 °C) Anneal
70(2)
3.8 Conclusions
72(3)
References
72(3)
4 Electrochemical Detection of Hormones
75(18)
4.1 Introduction
75(1)
4.2 Detection of Ovarian Hormone Estrone Glucuronide (E1G)
76(9)
4.2.1 Motivation
76(1)
4.2.2 Point-of-Care Methods
77(1)
4.2.3 Basal Body Temperature Method (BBT)
77(1)
4.2.4 Billings Ovulation Method
77(1)
4.2.5 Symptothermal Method (STM)
77(1)
4.2.6 Ovarian Monitor
78(1)
4.2.7 Materials and Methods to Detect E1G
78(1)
4.2.8 Results and Discussions
79(3)
4.2.9 Electrochemical Impedance Spectroscopy Analyses for E1G
82(1)
4.2.10 E1G Sensitivity Analysis
83(2)
4.3 Electrochemical Detection of Progesterone Hormone
85(6)
4.3.1 Motivation
85(2)
4.3.2 Materials and Methods for Progesterone Detection
87(1)
4.3.3 Electrochemical Impedance Analyses for Progesterone
87(4)
4.4 Conclusions
91(2)
References
91(2)
5 Electrochemical Detection of Endocrine Disrupting Compounds
93(20)
5.1 Introduction
93(2)
5.2 Impedimetric Detection of DEHP and DINP
95(14)
5.2.1 Motivation
96(1)
5.2.2 Materials and Methods
97(1)
5.2.3 DEHP Detection Test in Deionized Water
98(1)
5.2.4 Experimental Data Analyses by CNLS Curve Fitting
99(4)
5.2.5 Sensitivity Analysis---DEHP
103(1)
5.2.6 DEHP Detection in Commercially Sold Energy Drink
104(2)
5.2.7 Impedance Measurements of DINP-Spiked Ethanol Samples
106(2)
5.2.8 Impedance Measurements of DINP-Spiked Orange Juice
108(1)
5.3 Conclusions
109(4)
References
110(3)
6 Inducing Analyte Selectivity in the Sensing System
113(20)
6.1 Introduction
113(2)
6.2 Materials and Methods
115(2)
6.2.1 Synthesis of DEHP Imprinted Polymer
116(1)
6.3 EIS for Detection of DEHP in MilliQ
117(6)
6.3.1 Results and Discussions
122(1)
6.4 Adsorption Studies of DEHP to MIP
123(2)
6.4.1 Static Adsorption of DEHP to MIP
123(1)
6.4.2 Uptake Kinetics of MIP Coated Sensor to DEHP
124(1)
6.5 Data Analyses Using Nonlinear Least Square Curve Fitting
125(1)
6.6 Results Validation by HPLC
126(2)
6.7 DEHP in Energy Drink---MIP Coated Sensor
128(3)
6.8 Conclusions
131(2)
References
131(2)
7 Portable Low-Cost Testing System for Phthalates' Detection
133(10)
7.1 Introduction
133(1)
7.2 Motivation
133(1)
7.3 Development of Portable FRA Device
134(1)
7.4 System Design
134(2)
7.5 Materials and Methods
136(1)
7.6 Results and Discussions
137(1)
7.7 Electrochemical Impedance Spectroscopy Characterization
138(2)
7.8 Conclusions
140(3)
References
141(2)
8 Conclusions and Future Research
143
8.1 Summary and Conclusions
143(4)
8.2 Future Work
147
8.2.1 Sensitivity and Selectivity Improvement
147(1)
8.2.2 Thick Film Electrodes
147(1)
8.2.3 Substrate Type
148