|
1 Human Endocrine System and Hormonal Measurement |
|
|
1 | (20) |
|
1.1 Hormones and Endocrine-Disrupting Compounds |
|
|
1 | (3) |
|
1.2 Receptor--Ligand Binding Assays |
|
|
4 | (6) |
|
1.2.1 Radio Receptor Assay (RRA) |
|
|
5 | (1) |
|
1.2.2 Scintillation Proximity Assay (SPA) |
|
|
5 | (1) |
|
1.2.3 Fluorescence Resonance Energy Transfer (FRET) |
|
|
6 | (1) |
|
1.2.4 Fluorescence Polarization (FP) |
|
|
7 | (1) |
|
1.2.5 Fluorometric Microvolume Assay (FMAT) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.2.8 Fluorescence Correlation Spectroscopy (FCS) |
|
|
9 | (1) |
|
|
10 | (7) |
|
1.3.1 Surface Plasmon Resonance (SPR) |
|
|
11 | (1) |
|
1.3.2 Total Internal Reflection Fluorescence (TIRF) |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.3.4 Nuclear Magnetic Resonance Spectroscopy |
|
|
13 | (1) |
|
1.3.5 Amperometric Immunosensors |
|
|
14 | (1) |
|
1.3.6 Conductimetric Immunosensors |
|
|
14 | (1) |
|
1.3.7 Surface Acoustic Wave Immunosensors (SAW) |
|
|
14 | (1) |
|
1.3.8 Enzyme-Linked Immunosorbent Assay (ELISA) |
|
|
15 | (2) |
|
|
17 | (4) |
|
|
17 | (4) |
|
2 Impedance Spectroscopy and Experimental Setup |
|
|
21 | (18) |
|
|
21 | (1) |
|
2.2 Electrochemical Impedance Spectroscopy |
|
|
21 | (11) |
|
|
22 | (1) |
|
|
22 | (1) |
|
2.2.3 Fast Fourier Transforms (FFT) |
|
|
22 | (1) |
|
2.2.4 Phase Sensitive Detections (PSD) |
|
|
23 | (1) |
|
2.2.5 Frequency Response Analysis (FRA) |
|
|
23 | (1) |
|
2.2.6 Electrochemical Impedance Spectroscopy; Theory and Analyses |
|
|
24 | (4) |
|
2.2.7 `Nyquist' and `Bode' Plots for Impedance Data Analysis |
|
|
28 | (1) |
|
2.2.8 Randle's Electrochemical Cell Equivalent Circuit Model |
|
|
28 | (4) |
|
|
32 | (7) |
|
2.3.1 Equipment and Instrumentations |
|
|
33 | (1) |
|
2.3.2 Fixture and Test Probe Connections |
|
|
33 | (1) |
|
2.3.3 RS-232C Interface for 3522-50/3532-50 LCR Hi Tester |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (3) |
|
3 Novel Interdigital Sensors' Development |
|
|
39 | (36) |
|
3.1 Introduction to Interdigital Sensors |
|
|
39 | (2) |
|
3.2 Novel Planar Interdigital Sensors |
|
|
41 | (1) |
|
3.3 Finite Element Modelling Using COMSOL Multiphysics® |
|
|
42 | (7) |
|
|
49 | (7) |
|
3.5 Sensors' Profiling and Problem Definition |
|
|
56 | (1) |
|
3.5.1 Connection Pads Soldering |
|
|
56 | (1) |
|
3.6 Performance Evaluation |
|
|
57 | (1) |
|
3.6.1 Experimental Evaluation |
|
|
57 | (1) |
|
3.7 Achieving Stability in Sensors' Performance |
|
|
58 | (14) |
|
3.7.1 Post-fabrication Anneal of ID Sensor |
|
|
60 | (2) |
|
3.7.2 Results' Validation |
|
|
62 | (1) |
|
3.7.3 Complex Nonlinear Least Squares Curve Fitting |
|
|
62 | (4) |
|
3.7.4 Principal Component Analysis (PCA) |
|
|
66 | (1) |
|
3.7.5 PCA Analysis---EC1 (30--90 °C) Anneal |
|
|
67 | (1) |
|
3.7.6 PCA Analysis---EC2 (91--150 °C) Anneal |
|
|
68 | (2) |
|
3.7.7 PCA Analysis---EC3 (151--210 °C) Anneal |
|
|
70 | (2) |
|
|
72 | (3) |
|
|
72 | (3) |
|
4 Electrochemical Detection of Hormones |
|
|
75 | (18) |
|
|
75 | (1) |
|
4.2 Detection of Ovarian Hormone Estrone Glucuronide (E1G) |
|
|
76 | (9) |
|
|
76 | (1) |
|
4.2.2 Point-of-Care Methods |
|
|
77 | (1) |
|
4.2.3 Basal Body Temperature Method (BBT) |
|
|
77 | (1) |
|
4.2.4 Billings Ovulation Method |
|
|
77 | (1) |
|
4.2.5 Symptothermal Method (STM) |
|
|
77 | (1) |
|
|
78 | (1) |
|
4.2.7 Materials and Methods to Detect E1G |
|
|
78 | (1) |
|
4.2.8 Results and Discussions |
|
|
79 | (3) |
|
4.2.9 Electrochemical Impedance Spectroscopy Analyses for E1G |
|
|
82 | (1) |
|
4.2.10 E1G Sensitivity Analysis |
|
|
83 | (2) |
|
4.3 Electrochemical Detection of Progesterone Hormone |
|
|
85 | (6) |
|
|
85 | (2) |
|
4.3.2 Materials and Methods for Progesterone Detection |
|
|
87 | (1) |
|
4.3.3 Electrochemical Impedance Analyses for Progesterone |
|
|
87 | (4) |
|
|
91 | (2) |
|
|
91 | (2) |
|
5 Electrochemical Detection of Endocrine Disrupting Compounds |
|
|
93 | (20) |
|
|
93 | (2) |
|
5.2 Impedimetric Detection of DEHP and DINP |
|
|
95 | (14) |
|
|
96 | (1) |
|
5.2.2 Materials and Methods |
|
|
97 | (1) |
|
5.2.3 DEHP Detection Test in Deionized Water |
|
|
98 | (1) |
|
5.2.4 Experimental Data Analyses by CNLS Curve Fitting |
|
|
99 | (4) |
|
5.2.5 Sensitivity Analysis---DEHP |
|
|
103 | (1) |
|
5.2.6 DEHP Detection in Commercially Sold Energy Drink |
|
|
104 | (2) |
|
5.2.7 Impedance Measurements of DINP-Spiked Ethanol Samples |
|
|
106 | (2) |
|
5.2.8 Impedance Measurements of DINP-Spiked Orange Juice |
|
|
108 | (1) |
|
|
109 | (4) |
|
|
110 | (3) |
|
6 Inducing Analyte Selectivity in the Sensing System |
|
|
113 | (20) |
|
|
113 | (2) |
|
6.2 Materials and Methods |
|
|
115 | (2) |
|
6.2.1 Synthesis of DEHP Imprinted Polymer |
|
|
116 | (1) |
|
6.3 EIS for Detection of DEHP in MilliQ |
|
|
117 | (6) |
|
6.3.1 Results and Discussions |
|
|
122 | (1) |
|
6.4 Adsorption Studies of DEHP to MIP |
|
|
123 | (2) |
|
6.4.1 Static Adsorption of DEHP to MIP |
|
|
123 | (1) |
|
6.4.2 Uptake Kinetics of MIP Coated Sensor to DEHP |
|
|
124 | (1) |
|
6.5 Data Analyses Using Nonlinear Least Square Curve Fitting |
|
|
125 | (1) |
|
6.6 Results Validation by HPLC |
|
|
126 | (2) |
|
6.7 DEHP in Energy Drink---MIP Coated Sensor |
|
|
128 | (3) |
|
|
131 | (2) |
|
|
131 | (2) |
|
7 Portable Low-Cost Testing System for Phthalates' Detection |
|
|
133 | (10) |
|
|
133 | (1) |
|
|
133 | (1) |
|
7.3 Development of Portable FRA Device |
|
|
134 | (1) |
|
|
134 | (2) |
|
7.5 Materials and Methods |
|
|
136 | (1) |
|
7.6 Results and Discussions |
|
|
137 | (1) |
|
7.7 Electrochemical Impedance Spectroscopy Characterization |
|
|
138 | (2) |
|
|
140 | (3) |
|
|
141 | (2) |
|
8 Conclusions and Future Research |
|
|
143 | |
|
8.1 Summary and Conclusions |
|
|
143 | (4) |
|
|
147 | |
|
8.2.1 Sensitivity and Selectivity Improvement |
|
|
147 | (1) |
|
8.2.2 Thick Film Electrodes |
|
|
147 | (1) |
|
|
148 | |