Atjaunināt sīkdatņu piekrišanu

Elementary Methods in Number Theory 2000 ed. [Hardback]

  • Formāts: Hardback, 514 pages, height x width: 235x155 mm, weight: 2050 g, XVIII, 514 p., 1 Hardback
  • Sērija : Graduate Texts in Mathematics 195
  • Izdošanas datums: 21-Dec-1999
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387989129
  • ISBN-13: 9780387989129
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 73,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 86,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 514 pages, height x width: 235x155 mm, weight: 2050 g, XVIII, 514 p., 1 Hardback
  • Sērija : Graduate Texts in Mathematics 195
  • Izdošanas datums: 21-Dec-1999
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387989129
  • ISBN-13: 9780387989129
Citas grāmatas par šo tēmu:
Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets.
Preface vii
Notation and conventions xi
I A First Course in Number Theory 1(198)
Divisibility and Primes
3(42)
Division Algorithm
3(7)
Greatest Common Divisors
10(7)
The Euclidean Algorithm and Continued Fractions
17(8)
The Fundamental Theorem of Arithmetic
25(8)
Euclid's Theorem and the Sieve of Eratosthenes
33(4)
A Linear Diophantine Equation
37(5)
Notes
42(3)
Congruences
45(38)
The Ring of Congruence Classes
45(6)
Linear Congruences
51(6)
The Euler Phi Function
57(4)
Chinese Remainder Theorem
61(6)
Euler's Theorem and Fermat's Theorem
67(7)
Pseudoprimes and Carmichael Numbers
74(2)
Public Key Cryptography
76(4)
Notes
80(3)
Primitive Roots and Quadratic Reciprocity
83(38)
Polynomials and Primitive Roots
83(8)
Primitive Roots to Composite Moduli
91(7)
Power Residues
98(2)
Quadratic Residues
100(9)
Quadratic Reciprocity Law
109(7)
Quadratic Residues to Composite Moduli
116(4)
Notes
120(1)
Fourier Analysis on Finite Abelian Groups
121(50)
The Structure of Finite Abelian Groups
121(5)
Characters of Finite Abelian Groups
126(7)
Elementary Fourier Analysis
133(7)
Poisson Summation
140(4)
Trace Formulae on Finite Abelian Groups
144(7)
Gauss Sums and Quadratic Reciprocity
151(9)
The Sign of the Gauss Sum
160(9)
Notes
169(2)
The abc Conjecture
171(28)
Ideals and Radicals
171(4)
Derivations
175(6)
Mason's Theorem
181(4)
The abc Conjecture
185(6)
The Congruence abc Conjecture
191(5)
Notes
196(3)
II Divisors and Primes in Multiplicative Number Theory 199(154)
Arithmetic Functions
201(30)
The Ring of Arithmetic Functions
201(5)
Mean Values of Arithmetic Functions
206(11)
The Mobius Function
217(7)
Multiplicative Functions
224(3)
The mean value of the Euler Phi Function
227(2)
Notes
229(2)
Divisor Functions
231(36)
Divisors and Factorizations
231(6)
A Theorem of Ramanujan
237(3)
Sums of Divisors
240(6)
Sums and Differences of Products
246(9)
Sets of Multiples
255(5)
Abundant Numbers
260(5)
Notes
265(2)
Prime Numbers
267(22)
Chebyshev's Theorems
267(8)
Mertens's Theorems
275(7)
The Number of Prime Divisors of an Integer
282(5)
Notes
287(2)
The Prime Number Theorem
289(36)
Generalized Von Mangoldt Functions
289(4)
Selberg's Formulae
293(6)
The Elementary Proof
299(14)
Integers with k Prime Factors
313(7)
Notes
320(5)
Primes in Arithmetic Progressions
325(28)
Dirichlet Characters
325(5)
Dirichlet L-Functions
330(8)
Primes Modulo 4
338(3)
The Nonvanishing of L(1, X)
341(9)
Notes
350(3)
III Three Problems in Additive Number Theory 353(144)
Waring's Problem
355(20)
Sums of Powers
355(4)
Stable Bases
359(2)
Shnirel'man's Theorem
361(6)
Waring's Problem for Polynomials
367(6)
Notes
373(2)
Sums of Sequences of Polynomials
375(26)
Sums and Differences of Weighted Sets
375(7)
Linear and Quadratic Equations
382(5)
An Upper Bound for Representations
387(7)
Waring's Problem for Sequences of Polynomials
394(4)
Notes
398(3)
Liouville's Identity
401(22)
A Miraculous Formula
401(3)
Prime Numbers and Quadratic Forms
404(7)
A Ternary Form
411(2)
Proof of Liouville's Identity
413(6)
Two Corollaries
419(2)
Notes
421(2)
Sums of an Even Number of Squares
423(32)
Summary of Results
423(1)
A Recursion Formula
424(3)
Sums of Two Squares
427(4)
Sums of Four Squares
431(5)
Sums of Six Squares
436(5)
Sums of Eight Squares
441(4)
Sums of Ten Squares
445(8)
Notes
453(2)
Partition Asymptotics
455(20)
The Size of p(n)
455(3)
Partition Functions for Finite Sets
458(7)
Upper and Lower Bounds for logp(n)
465(8)
Notes
473(2)
An Inverse Theorem for Partitions
475(22)
Density Determines Asymptotics
475(7)
Asymptotics Determine Density
482(4)
Abelian and Tauberian Theorems
486(9)
Notes
495(2)
References 497(12)
Index 509