Preface |
|
vii | |
Notation and conventions |
|
xi | |
I A First Course in Number Theory |
|
1 | (198) |
|
|
3 | (42) |
|
|
3 | (7) |
|
|
10 | (7) |
|
The Euclidean Algorithm and Continued Fractions |
|
|
17 | (8) |
|
The Fundamental Theorem of Arithmetic |
|
|
25 | (8) |
|
Euclid's Theorem and the Sieve of Eratosthenes |
|
|
33 | (4) |
|
A Linear Diophantine Equation |
|
|
37 | (5) |
|
|
42 | (3) |
|
|
45 | (38) |
|
The Ring of Congruence Classes |
|
|
45 | (6) |
|
|
51 | (6) |
|
|
57 | (4) |
|
Chinese Remainder Theorem |
|
|
61 | (6) |
|
Euler's Theorem and Fermat's Theorem |
|
|
67 | (7) |
|
Pseudoprimes and Carmichael Numbers |
|
|
74 | (2) |
|
|
76 | (4) |
|
|
80 | (3) |
|
Primitive Roots and Quadratic Reciprocity |
|
|
83 | (38) |
|
Polynomials and Primitive Roots |
|
|
83 | (8) |
|
Primitive Roots to Composite Moduli |
|
|
91 | (7) |
|
|
98 | (2) |
|
|
100 | (9) |
|
Quadratic Reciprocity Law |
|
|
109 | (7) |
|
Quadratic Residues to Composite Moduli |
|
|
116 | (4) |
|
|
120 | (1) |
|
Fourier Analysis on Finite Abelian Groups |
|
|
121 | (50) |
|
The Structure of Finite Abelian Groups |
|
|
121 | (5) |
|
Characters of Finite Abelian Groups |
|
|
126 | (7) |
|
Elementary Fourier Analysis |
|
|
133 | (7) |
|
|
140 | (4) |
|
Trace Formulae on Finite Abelian Groups |
|
|
144 | (7) |
|
Gauss Sums and Quadratic Reciprocity |
|
|
151 | (9) |
|
The Sign of the Gauss Sum |
|
|
160 | (9) |
|
|
169 | (2) |
|
|
171 | (28) |
|
|
171 | (4) |
|
|
175 | (6) |
|
|
181 | (4) |
|
|
185 | (6) |
|
The Congruence abc Conjecture |
|
|
191 | (5) |
|
|
196 | (3) |
II Divisors and Primes in Multiplicative Number Theory |
|
199 | (154) |
|
|
201 | (30) |
|
The Ring of Arithmetic Functions |
|
|
201 | (5) |
|
Mean Values of Arithmetic Functions |
|
|
206 | (11) |
|
|
217 | (7) |
|
|
224 | (3) |
|
The mean value of the Euler Phi Function |
|
|
227 | (2) |
|
|
229 | (2) |
|
|
231 | (36) |
|
Divisors and Factorizations |
|
|
231 | (6) |
|
|
237 | (3) |
|
|
240 | (6) |
|
Sums and Differences of Products |
|
|
246 | (9) |
|
|
255 | (5) |
|
|
260 | (5) |
|
|
265 | (2) |
|
|
267 | (22) |
|
|
267 | (8) |
|
|
275 | (7) |
|
The Number of Prime Divisors of an Integer |
|
|
282 | (5) |
|
|
287 | (2) |
|
|
289 | (36) |
|
Generalized Von Mangoldt Functions |
|
|
289 | (4) |
|
|
293 | (6) |
|
|
299 | (14) |
|
Integers with k Prime Factors |
|
|
313 | (7) |
|
|
320 | (5) |
|
Primes in Arithmetic Progressions |
|
|
325 | (28) |
|
|
325 | (5) |
|
|
330 | (8) |
|
|
338 | (3) |
|
The Nonvanishing of L(1, X) |
|
|
341 | (9) |
|
|
350 | (3) |
III Three Problems in Additive Number Theory |
|
353 | (144) |
|
|
355 | (20) |
|
|
355 | (4) |
|
|
359 | (2) |
|
|
361 | (6) |
|
Waring's Problem for Polynomials |
|
|
367 | (6) |
|
|
373 | (2) |
|
Sums of Sequences of Polynomials |
|
|
375 | (26) |
|
Sums and Differences of Weighted Sets |
|
|
375 | (7) |
|
Linear and Quadratic Equations |
|
|
382 | (5) |
|
An Upper Bound for Representations |
|
|
387 | (7) |
|
Waring's Problem for Sequences of Polynomials |
|
|
394 | (4) |
|
|
398 | (3) |
|
|
401 | (22) |
|
|
401 | (3) |
|
Prime Numbers and Quadratic Forms |
|
|
404 | (7) |
|
|
411 | (2) |
|
Proof of Liouville's Identity |
|
|
413 | (6) |
|
|
419 | (2) |
|
|
421 | (2) |
|
Sums of an Even Number of Squares |
|
|
423 | (32) |
|
|
423 | (1) |
|
|
424 | (3) |
|
|
427 | (4) |
|
|
431 | (5) |
|
|
436 | (5) |
|
|
441 | (4) |
|
|
445 | (8) |
|
|
453 | (2) |
|
|
455 | (20) |
|
|
455 | (3) |
|
Partition Functions for Finite Sets |
|
|
458 | (7) |
|
Upper and Lower Bounds for logp(n) |
|
|
465 | (8) |
|
|
473 | (2) |
|
An Inverse Theorem for Partitions |
|
|
475 | (22) |
|
Density Determines Asymptotics |
|
|
475 | (7) |
|
Asymptotics Determine Density |
|
|
482 | (4) |
|
Abelian and Tauberian Theorems |
|
|
486 | (9) |
|
|
495 | (2) |
References |
|
497 | (12) |
Index |
|
509 | |