Atjaunināt sīkdatņu piekrišanu

Elementary Methods in Number Theory Softcover reprint of the original 1st ed. 2000 [Mīkstie vāki]

  • Formāts: Paperback / softback, 514 pages, height x width: 235x155 mm, weight: 819 g, XVIII, 514 p., 1 Paperback / softback
  • Sērija : Graduate Texts in Mathematics 195
  • Izdošanas datums: 02-May-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1475773927
  • ISBN-13: 9781475773927
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 53,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 62,54 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 514 pages, height x width: 235x155 mm, weight: 819 g, XVIII, 514 p., 1 Paperback / softback
  • Sērija : Graduate Texts in Mathematics 195
  • Izdošanas datums: 02-May-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1475773927
  • ISBN-13: 9781475773927
Citas grāmatas par šo tēmu:
Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets.

Papildus informācija

Springer Book Archives
A First Course in Number Theory.- Divisibility and Primes.-
Congruences.- Primitive Roots and Quadratic Reciprocity.- Fourier Analysis on
Finite Abelian Groups.- The abc Conjecture.- Divisors and Primes in
Multiplicative Number Theory.- Arithmetic Functions.- Divisor Functions.-
Prime Numbers.- The Prime Number Theorem.- Primes in Arithmetic
Progressions.- Three Problems in Additive Number Theory.- Warings Problem.-
Sums of Sequences of Polynomials.- Liouvilles Identity.- Sums of an Even
Number of Squares.- Partition Asymptotics.- An Inverse Theorem for Partitions.