Preface |
|
xv | |
Acknowledgments |
|
xix | |
|
Chapter 1 Energy is Universal |
|
|
1 | (34) |
|
1.1 Mysterious Invisible Energy |
|
|
1 | (5) |
|
|
2 | (3) |
|
|
5 | (1) |
|
1.2 Caloric: A Seductive Idea |
|
|
6 | (4) |
|
1.3 Energy Transfers: Work, Heat, Mass |
|
|
10 | (7) |
|
1.4 Imagined Systems With E = Constant |
|
|
17 | (2) |
|
|
17 | (1) |
|
1.4.2 Frictionless surfaces |
|
|
18 | (1) |
|
1.5 Dilute Gas Model: Ideal Gas |
|
|
19 | (2) |
|
1.6 Energy Definitions, Units |
|
|
21 | (4) |
|
1.7 Energy Transformation Examples |
|
|
25 | (10) |
|
Chapter 2 Energy is Not Enough |
|
|
35 | (28) |
|
2.1 The Work-Energy Theorem |
|
|
35 | (4) |
|
2.1.1 Conservation of energy |
|
|
35 | (1) |
|
2.1.2 Inadequacy of work-energy theorem |
|
|
36 | (3) |
|
2.2 Heat Defined In Terms Of Work |
|
|
39 | (1) |
|
2.3 Energy Is Not Sufficient |
|
|
40 | (1) |
|
2.4 Dissipation, Energy Spreading, Equity |
|
|
41 | (8) |
|
2.4.1 Energy exchanges & equity |
|
|
41 | (3) |
|
2.4.2 Carnot cycle & reversibility |
|
|
44 | (5) |
|
2.5 An Overview Of Temperature |
|
|
49 | (5) |
|
2.5.1 International temperature scale |
|
|
49 | (3) |
|
2.5.2 What, is temperature? |
|
|
52 | (2) |
|
2.6 Connecting Energy & Entropy |
|
|
54 | (9) |
|
2.6.1 Clausius's main contributions |
|
|
54 | (2) |
|
2.6.2 Clausius entropy & entropy increase |
|
|
56 | (1) |
|
2.6.3 Systems not in equilibrium |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.6.5 Entropy as missing information |
|
|
59 | (2) |
|
2.6.6 Confusion about entropy |
|
|
61 | (2) |
|
Chapter 3 Entropy: Energy's Needed Partner |
|
|
63 | (32) |
|
|
63 | (3) |
|
3.2 Entropy & Probability |
|
|
66 | (5) |
|
|
66 | (2) |
|
3.2.2 Boltzmann, probability Szentropy |
|
|
68 | (3) |
|
3.3 Entropy vs. Energy graphs |
|
|
71 | (5) |
|
|
71 | (3) |
|
3.3.2 Reflections on the entropy vs. energy curve |
|
|
74 | (1) |
|
|
75 | (1) |
|
3.4 Boltzmann Reservoir & Probability |
|
|
76 | (4) |
|
3.4.1 Boltzmann reservoir |
|
|
76 | (1) |
|
|
77 | (2) |
|
3.4.3 Statistical mechanics |
|
|
79 | (1) |
|
3.5 Helmholtz Free Energy |
|
|
80 | (15) |
|
3.5.1 Understanding free energy |
|
|
80 | (3) |
|
3.5.2 Available energy and exergy |
|
|
83 | (4) |
|
3.5.3 Available energy with finite reservoirs |
|
|
87 | (2) |
|
|
89 | (6) |
|
Chapter 4 Gases, Solids, Polymers |
|
|
95 | (58) |
|
4.1 Ideal Gas Sackur-Tetrode Entropy |
|
|
96 | (7) |
|
4.1.1 Quantum ideal gases |
|
|
98 | (5) |
|
4.2 Nonideal Gases & The Virial Expansion |
|
|
103 | (9) |
|
4.2.1 Liquid-vapour phase transition |
|
|
104 | (2) |
|
4.2.2 Clausius-Clapeyron equation |
|
|
106 | (1) |
|
|
107 | (4) |
|
|
111 | (1) |
|
4.3 Mixing Entropy Function |
|
|
112 | (8) |
|
4.3.1 Mixing or expansion? |
|
|
112 | (3) |
|
4.3.2 Mixing entropy function |
|
|
115 | (2) |
|
4.3.3 Gibbs paradox & information |
|
|
117 | (1) |
|
4.3.4 The role of information |
|
|
118 | (2) |
|
|
120 | (6) |
|
|
120 | (4) |
|
|
124 | (2) |
|
4.5 Paramagnets & Ferromagnets |
|
|
126 | (12) |
|
|
126 | (3) |
|
4.5.2 Negative temperature |
|
|
129 | (3) |
|
|
132 | (6) |
|
|
138 | (3) |
|
4.6.1 Rubber band experiment |
|
|
138 | (2) |
|
4.6.2 Model of a rubber band |
|
|
140 | (1) |
|
4.7 Nuclear Binding Energy, Fission, Fusion |
|
|
141 | (2) |
|
4.8 Jarzynski Free Energy Equality |
|
|
143 | (10) |
|
4.8.1 Examples of the Jarzynski equality |
|
|
149 | (4) |
|
Chapter 5 Radiation & Photons |
|
|
153 | (26) |
|
5.1 Em Radiation & Temperature |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
156 | (7) |
|
5.3.1 What is a photon gas? |
|
|
156 | (3) |
|
5.3.2 Photon gas equations & graphs |
|
|
159 | (2) |
|
5.3.3 Photon gas processes |
|
|
161 | (2) |
|
5.4 Kirchhoff's & Planck's Laws |
|
|
163 | (16) |
|
|
167 | (4) |
|
5.4.2 Cosmic microwave background radiation |
|
|
171 | (1) |
|
5.4.3 Hawking radiation from black holes |
|
|
172 | (4) |
|
5.4.4 What you see is not always what you get |
|
|
176 | (3) |
|
Chapter 6 Numerical Entropy |
|
|
179 | (16) |
|
|
179 | (4) |
|
6.2 Entropy Of Elements & Compounds |
|
|
183 | (1) |
|
6.3 Third Law Of Thermodynamics |
|
|
184 | (5) |
|
|
184 | (1) |
|
6.3.2 Three statements of the third law |
|
|
185 | (2) |
|
6.3.3 Metastable states and residual entropy |
|
|
187 | (1) |
|
6.3.4 Comparison of the third and other laws of thermodynamics |
|
|
188 | (1) |
|
6.3.5 The third law and model systems |
|
|
189 | (1) |
|
6.4 Entropy Units, Dimensionless Entropy |
|
|
189 | (6) |
|
6.4.1 Entropy's weird dimensions |
|
|
190 | (1) |
|
6.4.2 Dimensionless entropy |
|
|
190 | (1) |
|
|
191 | (2) |
|
6.4.4 Physical interpretation of tempergy |
|
|
193 | (2) |
|
Chapter 7 Language & Philosophy of Thermodynamics |
|
|
195 | (18) |
|
7.1 The Language Of Work & Heat |
|
|
195 | (9) |
|
|
195 | (2) |
|
7.1.2 Analogy: Bank transact ions & W, Q, E |
|
|
197 | (1) |
|
7.1.3 More about, defining heating energy |
|
|
198 | (2) |
|
7.1.4 Isothermal, reversible volume changes |
|
|
200 | (1) |
|
7.1.5 Work and heat for friction processes |
|
|
201 | (3) |
|
7.2 Links Between Thermodynamics Laws |
|
|
204 | (3) |
|
7.2.1 Thermal equilibrium & zeroth law |
|
|
204 | (1) |
|
7.2.2 Heating & direction of energy flow |
|
|
205 | (1) |
|
7.2.3 Linkage between first and second laws |
|
|
206 | (1) |
|
7.3 The Language Of Entropy |
|
|
207 | (6) |
|
7.3.1 More about metaphors |
|
|
207 | (6) |
|
Chapter 8 Working, Heating, Cooling |
|
|
213 | (38) |
|
|
214 | (3) |
|
|
214 | (1) |
|
8.1.2 How Clausius used cycles |
|
|
214 | (2) |
|
8.1.3 Implications of cycles for entropy |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (12) |
|
8.2.1 Reversible Carnot cycles |
|
|
217 | (2) |
|
8.2.2 Efficiency measures |
|
|
219 | (2) |
|
8.2.3 Reversible & irreversible Otto cycles |
|
|
221 | (3) |
|
8.2.4 Reversible & irreversible Stirling cycles |
|
|
224 | (3) |
|
8.2.5 Irreversible Carnot engine |
|
|
227 | (2) |
|
8.3 Irreversibility & 2nd Law Efficiency |
|
|
229 | (2) |
|
8.4 Combined-Cycle Heat Engines |
|
|
231 | (3) |
|
8.5 Lord Kelvin's Heat Pump |
|
|
234 | (3) |
|
|
237 | (14) |
|
|
237 | (2) |
|
8.6.2 Joule-Thomson process |
|
|
239 | (3) |
|
|
242 | (3) |
|
|
245 | (3) |
|
8.6.5 Adiabatic demagnetisation |
|
|
248 | (3) |
|
Chapter 9 Sanctity of the 2nd Law of Thermodynamics |
|
|
251 | (42) |
|
|
252 | (13) |
|
9.1.1 Statistical nature of the 2nd law |
|
|
252 | (2) |
|
|
254 | (3) |
|
9.1.3 Measurement, memory, erasure |
|
|
257 | (7) |
|
9.1.4 Maxwell's demon, efficiency, powGr |
|
|
264 | (1) |
|
9.2 Thermodynamics & Computation |
|
|
265 | (1) |
|
9.3 More About Fluctuations |
|
|
266 | (5) |
|
9.3.1 Smoluchowski's trapdoor |
|
|
266 | (3) |
|
9.3.2 Feynman ratchet and pawl |
|
|
269 | (2) |
|
|
271 | (7) |
|
9.4.1 Fluctuation phenomena |
|
|
271 | (2) |
|
9.4.2 Asymmetry & flashing Brownian ratchet |
|
|
273 | (4) |
|
9.4.3 Other Brownian ratchets |
|
|
277 | (1) |
|
9.4.4 Brownian ratchets & the 2nd law |
|
|
277 | (1) |
|
9.5 Attempts To Violate The 2nd Law |
|
|
278 | (15) |
|
9.5.1 Perpetual motion machines |
|
|
278 | (3) |
|
9.5.2 Challenges to the 2nd law |
|
|
281 | (1) |
|
9.5.3 Thermal electrons in a magnetic field |
|
|
281 | (4) |
|
9.5.4 Thermal electrons in a capacitor |
|
|
285 | (1) |
|
9.5.5 Theory of air column in gravitational field |
|
|
286 | (3) |
|
9.5.6 Spontaneous pressure differences |
|
|
289 | (4) |
|
Chapter 10 Reflections & Extensions |
|
|
293 | (6) |
|
|
293 | (2) |
|
|
295 | (4) |
|
10.2.1 Lieb-Yngvason formulation of thermodynamics |
|
|
295 | (1) |
|
10.2.2 Quantum mechanics and the second law |
|
|
296 | (3) |
|
Chapter 11 Appendices: Mathematical Identities |
|
|
299 | (2) |
|
11.1 Derivatives & Gibbs-Duhem Equation |
|
|
299 | (2) |
Subject Index |
|
301 | (6) |
Author Index |
|
307 | |