Atjaunināt sīkdatņu piekrišanu

First Snap-Fit Handbook: Creating and Managing Attachments for Plastics Parts Third Edition [Hardback]

  • Formāts: Hardback, 412 pages, height x width x depth: 247x200x23 mm, weight: 1102 g
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Hanser Publications
  • ISBN-10: 1569905959
  • ISBN-13: 9781569905951
  • Hardback
  • Cena: 231,58 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 412 pages, height x width x depth: 247x200x23 mm, weight: 1102 g
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Hanser Publications
  • ISBN-10: 1569905959
  • ISBN-13: 9781569905951
The system level knowledge and design skills needed to create good snap-fit interfaces existed in the minds of self-taught snap-fit experts but was not captured in the literature.

New designers of plastic parts wishing to use snap-fit had nowhere to turn unless they were fortunate enough to have access to an experienced snap-fit designer. This book organizes and presents all design aspects of snap-fits with an emphasis on the systems level thinking required to create world-class attachments. Beginning, as well as experienced, product designers will find the information they need to develop snap-fits more efficiently and avoid many common snap-fit problems.

The third edition has been thoroughly revised to include new case histories and applications. The text has been extensively rewritten for clarity and user-friendliness and there are many new figures with expert explanations.

With the purchase of this book, you also receive a free personal access code to download the eBook.
Foreword to Third Edition v
Preface to Third Edition vii
Foreword to Previous Editions ix
Prefaces to Previous Editions ix
Preface to First Edition xi
Preface to Second Edition xiv
1 Introduction
1(18)
1.1 Reader Expectations
2(1)
1.2 Harmful Beliefs
3(1)
1.3 Snap-Fit Technology
4(2)
1.4 Snap-Fits and Loose Fasteners
6(1)
1.5 Snap-Fits as Interface Systems
6(3)
1.5.1 Feature Level
7(1)
1.5.2 Attachment Level
7(2)
1.6 The Attachment Level Construct6 (ALC)
9(3)
1.6.1 Attachment Level Terminology
9(1)
1.6.2 Applying the ALC to Other Attachment Methods
10(1)
1.6.3 Required Capabilities for Snap-Fit Development
10(1)
1.6.4 Justifying the ALC
11(1)
1.7 Using This Book
12(2)
1.71 Sample Parts
14(3)
1.7.2 Snap-Fit Novices
15(1)
1.7.3 Experienced Product Developers
16(1)
1.7.4 Design for Assembly/Manufacturing Practitioners
16(1)
1.7.5 Executives and Engineering Managers
17(1)
1.8 Summary
17(2)
2 Key Requirements
19(10)
2.1 Constraint
19(2)
2.2 Compatibility
21(3)
2.3 Robustness
24(1)
2.4 Strength
24(2)
2.5 Summary
26(3)
3 Introduction to the Snap-Fit Development Process
29(12)
3.1 Concept vs. Detailed Design
30(1)
3.2 The Value of Multiple Concepts
31(1)
3.3 Step 0: Is a Snap-Fit Appropriate?
32(4)
3.4 The Demand-Complexity Matrix®
36(2)
3.5 Summary
38(3)
4 Descriptive Elements
41(14)
4.1 Function
41(4)
4.1.1 Action
42(1)
4.1.2 Purpose
43(1)
4.1.3 Retention
43(1)
4.1.4 Release
44(1)
4.2 Basic Shapes
45(5)
4.2.1 Mating-Part and Base-Part
45(1)
4.2.2 Basic Shape Descriptions
46(1)
4.2.3 Basic Shape Combinations
47(3)
4.3 Engage Direction
50(2)
4.4 Assembly Motion
52(2)
4.5 Summary
54(1)
5 Physical Elements: Locators
55(22)
5.1 Protrusion-Based Locators
56(4)
5.1.1 Pins
56(1)
5.1.2 Prongs
57(1)
5.1.3 Tabs
58(1)
5.1.4 Lugs
58(1)
5.1.5 Tracks
58(1)
5.1.6 Cones
59(1)
5.1.7 Wedges
59(1)
5.1.8 Catches
60(1)
5.2 Surface-Based Locators
60(1)
5.2.1 Surfaces
60(1)
5.2.2 Edges
61(1)
5.2.3 Lands
61(1)
5.3 Void-Based Locators
61(2)
5.3.1 Holes
62(1)
5.3.2 Slots
62(1)
5.3.3 Cutouts
62(1)
5.4 Living Hinges
63(1)
5.5 Using Locators
63(11)
5.5.1 Locator Pairs
63(2)
5.5.2 Providing Constraint
65(1)
5.5.3 Assembly Motion and Strength
66(2)
5.5.4 Fine-Tuning
68(1)
5.5.5 Dimensional Robustness
69(1)
5.5.5.1 Positioning
69(2)
5.5.5.2 Compliance
71(1)
5.5.5.3 Datum Points
72(1)
5.5.6 Constraint Efficiency
72(1)
5.5.7 Mechanical Advantage and Stability
73(1)
5.5.8 Ease of Assembly
74(1)
5.6 Summary
74(3)
6 Physical Elements: Locks
77(40)
6.1 Lock Deflection and Separation Behavior
78(2)
6.2 Lock Styles
80(1)
6.3 Cantilever Beam Locks
81(24)
6.3.1 Hooks
84(2)
6.3.1.1 Hook Assembly Behavior
86(2)
6.3.1.2 Hook Separation Behavior
88(3)
6.3.1.3 Hooks and Retainers
91(1)
6.3.1.4 Hooks and Prongs
92(1)
6.3.2 Loops
93(1)
6.3.2.1 Loop Assembly Behavior
94(1)
6.3.2.2 Loop Separation Behavior
95(1)
6.3.2.3 Loops and Knit Lines
96(2)
6.3.3 Traps
98(3)
6.3.3.1 Trap Assembly Behavior
101(1)
6.3.3.2 Trap Separation Behavior
101(2)
6.3.4 Low Deflection Lugs
103(1)
6.3.5 Other Cantilever Beam Locks
104(1)
6.4 Planar Locks
105(2)
6.5 Torsional Locks
107(1)
6.6 Annular Locks
107(1)
6.7 Using Locks
108(5)
6.7.1 Lock Pairs
108(1)
6.7.2 Short Grip-Length and Low-Clearance Applications
109(1)
6.7.3 High Demand Applications
110(1)
6.7.4 Tamper Resistant Applications
111(1)
6.7.5 The Case against Cantilever Hooks
111(2)
6.8 Summary
113(4)
7 Lock Strength and Decoupling
117(16)
7.1 Level 0 No Decoupling
119(1)
7.2 Level 1 Decoupling
120(1)
7.3 Level 2 Decoupling
121(3)
7.4 Level 3 Decoupling
124(1)
7.5 Level 4 Decoupling
125(5)
7.6 Summary
130(3)
8 Constraint in Snap-Fit Applications
133(26)
8.1 Perfect Constraint
134(2)
8.2 Proper Constraint
136(1)
8.3 Under-Constraint
137(2)
8.4 Over and Improper Constraint
139(6)
8.4.1 Redundant Constraint Features
140(1)
8.4.2 Opposing Constraint Features
141(4)
8.5 The Constraint Worksheet
145(6)
8.6 Using the Constraint Worksheet
151(5)
8.7 Constraint Rules
156(1)
8.8 Summary
157(2)
9 Physical Elements: Enhancements
159(44)
9.1 Assembly Enhancements
160(16)
9.1.1 Guides
161(2)
9.1.2 Clearance
163(1)
9.1.3 Pilots
164(1)
9.1.4 Example: Switch Application
165(3)
9.1.5 Example: Reflector Application
168(4)
9.1.6 Feedback
172(4)
9.2 Activation Enhancements
176(6)
9.2.1 Visuals
176(3)
9.2.2 Assists
179(1)
9.2.3 User-Feel
180(2)
9.3 Performance Enhancements
182(7)
9.3.1 Guards
182(1)
9.3.2 Retainers
183(1)
9.3.3 Compliance
184(1)
9.3.3.1 Local Yield
185(2)
9.3.3.2 Elasticity
187(1)
9.3.3.3 Isolators
187(1)
9.3.4 Back-Up Features
187(2)
9.4 Manufacturing Enhancements
189(8)
9.4.1 Process-Friendly Design
190(3)
9.4.2 Fine-Tuning Enablers
193(4)
9.5 Summary
197(6)
10 Applying the Snap-Fit Development Process
203(30)
10.1 Step 1: Define the Application
204(2)
10.2 Step 2: Benchmark
206(4)
10.3 Step 3: Generate Multiple Concepts
210(12)
10.3.1 Engage Direction
211(1)
10.3.2 Assembly Motions
212(3)
10.3.3 Identify Constraint Pairs
215(5)
10.3.4 Add Some Enhancements
220(1)
10.3.5 Select a Concept for Analysis
221(1)
10.4 Step 4: Design and Analyze Features
222(5)
10.4.1 Lock Alternatives
223(1)
10.4.1.1 Threaded Fasteners
223(2)
10.4.1.2 Plastic Push-In Fasteners
225(1)
10.4.1.3 Spring-Steel Clips
226(1)
10.5 Step 5: Confirm Design with Parts
227(3)
10.6 Step 6: Fine-Tune the Design
230(1)
10.7 Step 7: Snap-Fit Application Completed
231(1)
10.8 Summary
231(2)
11 Feature Development: Material Properties
233(18)
11.1 Sources of Material Property Data
233(1)
11.2 Material Property Assumptions
234(1)
11.3 The Stress-Strain Curve
235(4)
11.4 Determining a Design Point
239(5)
11.4.1 Applications with Fixed Strain
239(1)
11.4.2 Applications with Variable Strain
240(2)
11.4.3 The Secant Modulus
242(1)
11.4.4 Maximum Permissible Strain Data
242(2)
11.5 Coefficient of Friction
244(2)
11.6 Other Effects on Material Properties
246(3)
11.7 Summary
249(2)
12 Lock Feature Development: Rules-of-Thumb
251(18)
12.1 Beam-Based Locks
251(8)
12.1.1 Beam Thickness at the Base
253(3)
12.1.3 Beam Thickness at the Retention Feature
256(1)
12.1.4 Beam Width
257(2)
12.2 Retaining Member: Catch
259(3)
12.2.1 The Insertion Face
259(1)
12.2.2 The Retention Face
260(2)
12.3 Loops
262(1)
12.4 Traps
263(2)
12.5 Other Lock Styles
265(3)
12.5.1 Torsional Locks
265(1)
12.5.2 Planar Locks
265(1)
12.5.3 More Lock Styles
266(2)
12.6 Summary
268(1)
13 Lock Feature Development: Calculations
269(68)
13.1 Assumptions and Allowances
270(2)
13.2 The Deflecting Member: Cantilever Beam
272(24)
13.2.1 General Equations for Rectangular Sections
273(1)
13.2.2 Constant Section Beam Bending
274(3)
13.2.3 Adjusting the Design Strain for Stress Concentration
277(2)
13.2.4 Calculating the Initial Beam Strain
279(1)
13.2.5 Adjusting for Deflection at the Beam's Base
279(4)
13.2.6 Calculating the Initial Beam Deflection Force
283(1)
13.2.7 Adjusting for Mating Feature/Part Deflection
283(2)
13.2.8 Example Beam Strain and Deflection Calculations
285(7)
13.2.9 Deflection Graphs for a Straight Beam
292(4)
13.3 Deflecting Member: Tapered Beams
296(11)
13.3.1 Taper Error Example
297(2)
13.3.2 Beams Tapered in Thickness
299(5)
13.3.3 Beams Tapered in Width
304(3)
13.4 Beam Calculation Summary
307(1)
13.5 Other Deflecting Member Styles
308(3)
13.5.1 Other Beam-Based Styles: Loops and Traps
308(2)
13.5.2 Other Styles: Torsional, Annular, and Planar Deflection
310(1)
13.6 The Retaining Member: Catch
311(14)
13.6.1 Lock Assembly Force
312(1)
13.6.1.1 Adjusting for the Insertion Face Effective Angle----
312(2)
13.6.1.2 Example Assembly Force Calculations
314(1)
13.6.1.3 Modifying the Insertion Face Profile
315(4)
13.6.2 Catch Separation Force
319(1)
13.6.2.1 Adjusting for the Retention Face Effective Angle
319(2)
13.6.2.2 Example Assembly Force Calculations
321(2)
13.6.2.3 Modifying the Retention Face Profile
323(2)
13.7 Stationary Catches and Traps as Retaining Members
325(4)
13.7.1 Other Separation Considerations
328(1)
13.8 Using Finite Element Analysis
329(1)
13.9 Calculation Spreadsheets
330(3)
13.10 Summary
333(4)
14 Diagnosing Snap-Fit Problems
337(12)
14.1 Common Snap-Fit Mistakes
339(1)
14.2 Attachment Level Diagnosis
340(1)
14.3 Feature Level Diagnosis
341(6)
14.4 Summary
347(2)
15 Gaining a Competitive Advantage in Snap-Fit Technology
349(30)
15.1 Terminology
351(1)
15.2 Managing Expectations
352(1)
15.3 Harmful Beliefs
353(2)
15.4 The Demand-Complexity Matrix
355(5)
15.5 The Snap-Fit Capability Plan
360(3)
15.5.1 Vision, Mission, and Values
361(1)
15.5.2 Objectives
361(1)
15.5.3 Strategies
361(2)
15.6 Initiatives for Getting Started
363(6)
15.6.1 Provide Education and Training
364(1)
15.6.2 Provide Technical Resources
364(1)
15.6.3 Identify Low-Impact Applications as a Starting Point
364(1)
15.6.4 Use Physical Models
365(1)
15.6.5 Provide Benchmarking Opportunities
365(1)
15.6.6 Include Snap-Fit Technical Requirements in the Bidding and Purchasing Processes
366(2)
15.6.7 Identify Intermediate Applications
368(1)
15.7 Initiatives for Organizational Capability
369(7)
15.7.1 Identify and Empower a Snap-Fit Champion
369(1)
15.7.2 Identify and Empower a Snap-Fit Technical Leader
369(1)
15.7.3 Make Snap-Fit Technology Visible in the Organization
370(1)
15.7.4 Link Snap-Fits to Other Business Strategies
370(1)
15.7.5 Create and Maintain a Library of Preferred Concepts
370(2)
15.7.5.1 Example of a Preferred Concepts Initiative
372(3)
15.7.6 Have a Model of the Snap-Fit Technical Domain
375(1)
15.7.7 Reward Teamwork and Make Snap-Fits Interesting
375(1)
15.7.8 Identify Supportive Customers and Suppliers
375(1)
15.8 Summary
376(3)
Appendix - Resources 379(4)
About the Author 383(2)
Index 385
Paul R. Bonenberger is President of FasteningSmart, Inc., a position he has held since 2006. He is an widely recognized expert on mechanical attachments, especially those involving threaded fasteners or snap-fits. He consults on design solutions, problem diagnosis, patents, and technology management issues, and undertakes training courses in this area. Previously, he spent 37 years at General Motors as Staff Project Engineer specializing in mechanical attachments. He holds degrees from Oakland University, University of Detroit-Michigan, and Kettering University (previously General Motors Institute).