Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Biomaterials

  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Nov-2018
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781493988563
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Nov-2018
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781493988563
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text for advanced undergraduate and graduate students covers the fundamental relationships between the structure and properties of materials and biological tissues. The successful integration of material and biological properties, shape, and architecture to engineer a wide range of optimized designs for specific functions is the ultimate aim of a biomaterials scientist. Relevant examples illustrate the intrinsic and tailored properties of metal, ceramic, polymeric, carbon-derived, composite, and naturally derived biomaterials.

Fundamentals of Biomaterials is written in a single voice, ensuring clarity and continuity of the text and content. As a result, the reader will be gradually familiarized with the field, starting with materials and their properties and eventually leading to critical interactions with the host environment. Classical and novel examples illuminate topics from basic material properties to tissue engineering, nanobiomaterials, and guided tissue regeneration.

This comprehensive and engaging text:

  • integrates materials and biological properties to understand biomaterials function and design
  • provides the basics of biological tissue components and hierarchy
  • includes recent topics from tissue engineering and guided tissue regeneration to nanoarchitecture of biomaterials and their surfaces
  • contains perspectives/case studies from widely-recognized experts in the field
  • features chapter-ending summaries to help readers to identify the key, take-home messages.


1 Introduction 1(14)
1.1 Vitruvian Man
1(1)
1.2 The Need for Biomaterials and Biomedical Devices
1(3)
1.3 Historical Development of Biomaterials
4(1)
1.4 Some Firsts in the Biomaterial Field
5(3)
1.5 Definition of Biomaterials
8(1)
1.6 Properties of Biomaterials
8(1)
1.7 Biomaterial Sources
9(3)
1.8 Biocompatibility
12(2)
1.9 Conclusion
14(1)
References
14(1)
2 Properties of Solids 15(20)
2.1 General Properties
15(1)
2.2 Basic Bonding Types
15(4)
2.2.1 Covalent Bond
15(1)
2.2.2 Ionic Bonds
16(1)
2.2.3 Metallic Bond
17(1)
2.2.4 van der Waals Bonds
18(1)
2.2.5 Hydrogen Bonding
19(1)
2.3 Physical Form
19(5)
2.3.1 Fibers
20(1)
2.3.2 Sheets
21(1)
2.3.3 Foams
22(1)
2.3.4 Spherical Biomaterials
22(1)
2.3.5 Tubular Biomaterials
23(1)
2.3.6 Biomaterials with Engineered Surfaces
23(1)
2.4 Important Properties
24(9)
2.4.1 Mechanical Properties
24(6)
2.4.2 Viscoelasticity
30(1)
2.4.3 Electrical Properties
31(1)
2.4.4 Thermal Properties
32(1)
2.5 Conclusion
33(1)
References
33(2)
3 Metals as Biomaterials 35(16)
3.1 General Properties
35(1)
3.2 Medical Applications of Metals
36(3)
3.3 Types and Properties of Biomedical Metals
39(8)
3.3.1 Stainless Steel
39(1)
3.3.2 Cobalt-Chromium Alloys
40(1)
3.3.3 Titanium Alloys
41(2)
3.3.4 Tantalum
43(1)
3.3.5 Nickel-Titanium Alloy (Nitinol)
44(2)
3.3.6 Magnesium-Based Biodegradable Alloys
46(1)
3.4 Surface Properties of Metal Implants for Osseointegration
47(1)
3.5 Conclusion
48(1)
References
49(2)
4 Ceramics 51(14)
4.1 General Properties
51(1)
4.2 Manufacturing Ceramics
52(1)
4.3 Structural Compositions of Ceramics
53(1)
4.4 Advanced Ceramics
54(1)
4.5 Bioceramics
55(7)
4.5.1 Examples for Bioceramics
56(1)
4.5.2 Alumina
56(1)
4.5.3 Zirconia (Zr02)
57(1)
4.5.4 Calcium Phosphate Ceramics (CPC)
58(1)
4.5.5 Bioactive Glasses (Glass Ceramics)
59(3)
4.6 Ceramics, Bioglasses, and Composites for Biomedical Applications
62(2)
4.7 Conclusion
64(1)
References
64(1)
5 Polymers as Biomaterials 65(18)
5.1 Types of Polymerization Reactions
65(6)
5.1.1 Chain Growth (Addition) Polymerization
65(3)
5.1.2 Step Growth Polymerization
68(1)
5.1.3 Click Polymerization
68(2)
5.1.4 ATRP Polymerization
70(1)
5.1.5 RAFT Polymerization
70(1)
5.2 Polymerization Techniques
71(1)
5.2.1 Bulk Polymerization
71(1)
5.2.2 Solution Polymerization
71(1)
5.2.3 Suspension Polymerization
71(1)
5.2.4 Emulsion Polymerization
72(1)
5.3 Polymer Types
72(3)
5.3.1 Linear, Branched, and Cross-linked Polymers
72(2)
5.3.2 Thermoplastics, Thermosets, and Elastomers
74(1)
5.3.3 Hydrogels
74(1)
5.4 Properties of Polymers
75(5)
5.4.1 Conducting Polymers
75(2)
5.4.2 Shape Memory Polymers
77(1)
5.4.3 Degradation/Deterioration
77(3)
5.5 Conclusion
80(1)
References
81(2)
6 Carbon as a Biomaterial 83(12)
6.1 General Properties
83(1)
6.2 Pyrolytic Carbon (PC)
83(2)
6.3 Graphite
85(1)
6.4 Active Charcoal (Activated Carbon)
86(1)
6.5 Graphene
87(2)
6.6 Carbon Nanotubes
89(1)
6.7 Carbon Products as Coating Materials
90(2)
6.8 Conclusion
92(1)
References
92(3)
7 Building Blocks of the Human Body 95(22)
7.1 General Properties
95(1)
7.2 Proteins
95(4)
7.3 Polynucleotides: DNA and RNA
99(3)
7.4 Polysaccharides/Carbohydrates
102(3)
7.5 Lipids
105(3)
7.5.1 Phospholipids
106(1)
7.5.2 Cholesterol
107(1)
7.6 Some Important Structural Molecules
108(6)
7.6.1 Collagen
108(1)
7.6.2 Gelatin
109(1)
7.6.3 Elastin
110(1)
7.6.4 Keratin
110(2)
7.6.5 Chondroitin Sulfate
112(1)
7.6.6 Dermatan Sulfate
113(1)
7.6.7 Hyaluronic Acid
114(1)
7.7 Conclusion
114(1)
References
114(3)
8 Composites as Biomaterials 117(14)
8.1 General Properties
117(1)
8.2 Limitations of Composites
118(1)
8.3 Biomedical Composites
118(1)
8.4 Polymer Matrix Composites (PMCs)
119(2)
8.5 Ceramic Matrix Composites (CMCs)
121(1)
8.6 Metal Matrix Composites (MMCs)
122(1)
8.7 Constituents and Classification of Biocomposites
123(1)
8.8 Bone Structure: A Natural Composite
124(3)
8.9 Orthopedic Implants
127(1)
8.10 Surface Modifications: A Route to Composites
128(1)
8.11 Tissue Engineering Scaffolds
129(1)
8.12 Conclusion
130(1)
References
130(1)
9 Fundamentals of Human Biology and Anatomy 131(10)
9.1 Fundamentals of Human Biology and Anatomy
131(1)
9.2 The Cell
132(1)
9.3 Tissues
133(5)
9.3.1 Epithelial Tissues
134(1)
9.3.2 Connective Tissues
135(2)
9.3.3 Muscle Tissues
137(1)
9.3.4 Nervous Tissues
137(1)
9.4 Systems
138(1)
9.5 Conclusion
139(1)
References
140(1)
10 Tissue-Biomaterial Interactions 141(18)
10.1 General Properties
141(1)
10.2 Interaction Between the Biomaterial Surface and the Tissue
141(5)
10.2.1 The Polymeric Materials
142(2)
10.2.2 The Surface of the Metallic Materials
144(1)
10.2.3 The Surface of the Ceramic Materials
145(1)
10.3 Effect of the Biological Medium on Biomaterials
146(3)
10.3.1 Polymers
146(2)
10.3.2 Metals
148(1)
10.3.3 Ceramics
148(1)
10.4 Effect of Biomaterials on Cells
149(2)
10.4.1 Integrity
150(1)
10.4.2 Conformation
150(1)
10.4.3 Attachment
150(1)
10.4.4 Metabolic Activity and Proliferation
150(1)
10.4.5 Differentiation
150(1)
10.5 Effect of Biomaterials on the Biological Tissues
151(1)
10.6 Responses of the Body to Implantation
152(4)
10.6.1 Inflammation
152(2)
10.6.2 Remodeling
154(1)
10.6.3 Responses to Biomaterials During and After the Healing
155(1)
10.7 Conclusion
156(1)
References
157(2)
11 Biocompatibility 159(14)
11.1 General Introduction
159(2)
11.2 International Standard 10993
161(5)
11.2.1 Test Example
165(1)
11.3 Hemocompatibility
166(2)
11.3.1 In Vitro Testing
166(2)
11.3.2 Ex Vivo Tests
168(1)
11.3.3 In Vivo Tests
168(1)
11.4 Clinical Trials
168(3)
11.4.1 The Main Criteria for a Medical Device
169(1)
11.4.2 The Categories of the Devices According to the Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA, USA)
170(1)
11.4.3 Clinical Trial Phases
171(1)
11.5 Conclusion
171(1)
References
171(2)
12 Hemocompatibility 173(14)
12.1 General Information
173(1)
12.2 Circulatory System
173(3)
12.2.1 The Elements of the Circulatory System
174(2)
12.3 Blood Coagulation and Clotting Factors
176(2)
12.4 Factors Influencing Hemocompatibility
178(2)
12.4.1 Surface Chemistry
178(2)
12.5 Protein Adsorption
180(1)
12.6 Surface Topography
181(1)
12.7 Testing for Hemocompatibility
182(3)
12.7.1 Protein Adsorption Tests
182(1)
12.7.2 Blood Clotting Tests
183(1)
12.7.3 Hemolytic Activity Tests
184(1)
12.7.4 Some Commercial Vascular Grafts in the Market
185(1)
12.8 Conclusion
185(1)
References
186(1)
13 Sterilization of Biomaterials 187(12)
13.1 General Information
187(1)
13.2 Methods of Sterilization
187(5)
13.2.1 Dry Heat Sterilization
188(1)
13.2.2 Steam Under Pressure (Autoclaving)
188(1)
13.2.3 Ethylene Oxide (EtO) Gas Sterilization
188(1)
13.2.4 Vaporized Hydrogen Peroxide
189(1)
13.2.5 Ionizing Radiation
189(2)
13.2.6 Chemical Sterilization
191(1)
13.3 The Influence of Sterilization Methods on Biomaterials
192(5)
13.3.1 Polymers
192(2)
13.3.2 Metals
194(1)
13.3.3 Ceramics
195(1)
13.3.4 Natural Tissues
196(1)
13.3.5 Other
197(1)
13.4 Conclusion
197(1)
References
198(1)
14 Biomaterials and Devices in Soft Tissue Augmentation 199(20)
14.1 General Information
199(1)
14.2 Sutures
199(7)
14.2.1 Characteristics of Suture Materials
199(1)
14.2.2 Classification of Sutures
200(6)
14.3 Tissue Adhesives
206(4)
14.3.1 Synthetic Tissue Adhesives
206(1)
14.3.2 Biological Adhesives
207(1)
14.3.3 Other Adhesives
208(2)
14.4 Burn Dressings
210(1)
14.5 Artificial Skin
211(3)
14.5.1 Integra
212(1)
14.5.2 Apligraf
212(1)
14.5.3 Biobrane
213(1)
14.5.4 Epicel
213(1)
14.5.5 OrCel
213(1)
14.5.6 TransCyte
213(1)
14.6 Tissue Augmentation and Cosmetic Application
214(1)
14.7 Soft Dental Tissues
215(1)
14.8 Breast Reconstruction Strategies
215(2)
14.9 Conclusion
217(1)
References
217(2)
15 Biomaterials and Devices in Hard Tissue Augmentation 219(14)
15.1 Introduction
219(1)
15.2 Internal Fixation Materials for Fractures
220(5)
15.2.1 Bone Plates
221(3)
15.2.2 Screws, Pins, Rods, and Wires
224(1)
15.3 Total Hip Implant
225(1)
15.4 Bone Cement
226(2)
15.5 Dental Implants
228(2)
15.5.1 Bone Augmentation
228(1)
15.5.2 Implants
229(1)
15.5.3 Crowns
229(1)
15.6 Conclusion
230(1)
References
231(2)
16 Blood Interfacing Applications 233(24)
16.1 Blood Interfacing Implants and Hemocompatibility
233(1)
16.2 Vascular Grafts
234(3)
16.2.1 Important Parameters in Vascular Graft Design
235(2)
16.3 Tissue-Engineered Vascular Grafts
237(2)
16.4 Heart Valves
239(5)
16.4.1 Heart Valve Replacement
240(1)
16.4.2 Bioprosthetic Heart Valves (Allografts and Xenografts)
240(1)
16.4.3 Prosthetic Heart Valves
240(4)
16.5 Artificial Heart
244(3)
16.6 Stents and Assist Devices
247(1)
16.6.1 Restenosis and Drug-Eluting Stents (DES)
247(1)
16.7 Membrane Oxygenators
248(3)
16.7.1 Comparison with the Lungs in Terms of Rate of Transference, Surface Area, and Oxygenation Efficiency
250(1)
16.7.2 Hollow Fiber Oxygenators
250(1)
16.8 Dialysis Systems
251(3)
16.9 Conclusion
254(1)
References
254(3)
17 Controlled Release Systems 257(24)
17.1 General Information
257(1)
17.2 The Journey of a Drug Molecule in the Body
257(3)
17.2.1 Administration
257(2)
17.2.2 Distribution
259(1)
17.2.3 Metabolism
259(1)
17.2.4 Elimination and Excretion
260(1)
17.3 Advantages of Controlled Drug Delivery
260(1)
17.4 Methods to Achieve Prolonged or Sustained Drug Delivery
261(4)
17.4.1 Approaches
261(1)
17.4.2 The Processes
262(3)
17.5 Parameters Important in Achieving Controlled Release
265(3)
17.5.1 The Properties of the Drug
266(2)
17.6 The Properties of the Drug Carrier
268(1)
17.7 The Pharmacokinetics of Drug Bioavailability
269(2)
17.7.1 Higuchi Equation
270(1)
17.8 Classification of CRS Systems
271(3)
17.8.1 Stability Related Classification: Erodible and Nonerodible Systems
271(1)
17.8.2 Shape-Related Classification
272(2)
17.9 Responsiveness Related Classification
274(3)
17.9.1 pH-Responsive Systems
275(1)
17.9.2 Temperature-Responsive Systems
275(1)
17.9.3 Photoresponsive Systems
275(2)
17.10 Targeted Delivery
277(1)
17.11 Conclusion
278(1)
References
279(2)
18 Tissue Engineering and Regenerative Medicine 281(22)
18.1 Important Concepts: Development of Tissue Engineering and Regenerative Medicine
281(1)
18.2 Definition of Tissue Engineering
281(2)
18.3 Components of Tissue Engineering
283(1)
18.4 Scaffolds
283(10)
18.4.1 Scaffold Forms
284(3)
18.4.2 The Scaffold Material
287(2)
18.4.3 The Scaffold Chemistry
289(3)
18.4.4 Production of Scaffolds
292(1)
18.5 Cell Types
293(3)
18.5.1 Primary Cells
294(1)
18.5.2 Stem Cells
295(1)
18.6 Growth Factors
296(4)
18.7 Conclusion
300(1)
References
300(3)
19 Nano- and Microarchitecture of Biomaterial Surfaces 303(28)
19.1 Importance of Nanoness
303(1)
19.2 Nanoparticles
303(3)
19.2.1 Transport of Nanoparticles
304(1)
19.2.2 Release Rate
305(1)
19.2.3 Degradation
305(1)
19.2.4 A Negative and a Positive Effect of Nanosize
306(1)
19.3 Nanofibers
306(2)
19.4 Nanosurfaces and Coats
308(2)
19.5 Nano- and Micro-features (NMF) and Their Importance in Implant Performance
310(2)
19.5.1 Biological Macromolecules and Natural NMF
310(1)
19.5.2 NMF on Biomaterial Surfaces
311(1)
19.5.3 Physical, and Chemical and Biological NMF
312(1)
19.6 Patterning Techniques
312(6)
19.6.1 Physical Patterning
313(3)
19.6.2 Chemical Patterning
316(1)
19.6.3 Biological Patterning
316(2)
19.7 Influence of Surface Topography on Cell Response
318(6)
19.7.1 Osteoblasts
319(1)
19.7.2 Fibroblasts
320(1)
19.7.3 Endothelial Cells
321(1)
19.7.4 Epithelial Cells
322(1)
19.7.5 Macrophages
323(1)
19.7.6 Stem Cells (MSCs) and Other Cells
323(1)
19.8 Conclusion
324(1)
References
325(6)
Index 331
Dr. Vasif Hasirci served as a professor at the Department of Biological Sciences of the Middle East Technical University (METU), Ankara (Turkey) for more than 40 years and is currently a Professor at Acbadem Mehmet Ali Aydnlar University, Department of Medical Engineering (Istanbul). He is a chemist and an expert in biomedical, biotechnological and nanotechnological applications of natural and synthetic polymers. He is the Founding Director of the Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN) at METU and the President of the Biomaterials and Tissue Engineering Society (Turkey). He is a Fellow of the Science Academy (Turkey), the International College of Fellows of Biomaterials Science and Engineering (UISBSE-FBSE), and the Royal Society of Chemistry (FRSC) (UK). He is also a member of the European Society for Biomaterials (ESB), American Chemical Society, and Turkish Chemistry Society.He serves on the Editorial Boards of the journals Biomaterials; Nanomedicine; and J. Biomaterials Science: Polymer Edition, Regenerative Biomaterials among others. He has 5 patents and patent applications, more than 200 SCI journal papers, supervised 47 M.Sc. and 25 Ph.D. students, was cited 4200+ times and has a H-index of 41 (Web of Science) Dr. Nesrin Hasirci is a professor at the Department of Chemistry of the Middle East Technical University (METU), Ankara (Turkey). She is also a member and is among the founders of several interdisciplinary Graduate Departments such as Biomedical Engineering, Biotechnology, Micro and Nanotechnology, Polymer Science and Technology, as well as the Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN), all at METU. She is a Fellow of the Science Academy (Turkey). She is member of European Society for Biomaterials (ESB), Biomaterials and Tissue Engineering Society (Turkey), Turkish Society of Polymer Science and Technology, Turkish Chemistry Society, Fulbright AlumniAssociation of Turkey.  She has 5 patents, 155 SCI journal papers, 16 chapters in scientific books, supervised 40 M.Sc. and 20 Ph.D. students, and has a H-index of 30 (Web of Science).