1 Introduction |
|
1 | (14) |
|
|
1 | (1) |
|
1.2 The Need for Biomaterials and Biomedical Devices |
|
|
1 | (3) |
|
1.3 Historical Development of Biomaterials |
|
|
4 | (1) |
|
1.4 Some Firsts in the Biomaterial Field |
|
|
5 | (3) |
|
1.5 Definition of Biomaterials |
|
|
8 | (1) |
|
1.6 Properties of Biomaterials |
|
|
8 | (1) |
|
|
9 | (3) |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
14 | (1) |
2 Properties of Solids |
|
15 | (20) |
|
|
15 | (1) |
|
|
15 | (4) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
2.2.4 van der Waals Bonds |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (5) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.3.4 Spherical Biomaterials |
|
|
22 | (1) |
|
2.3.5 Tubular Biomaterials |
|
|
23 | (1) |
|
2.3.6 Biomaterials with Engineered Surfaces |
|
|
23 | (1) |
|
|
24 | (9) |
|
2.4.1 Mechanical Properties |
|
|
24 | (6) |
|
|
30 | (1) |
|
2.4.3 Electrical Properties |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
3 Metals as Biomaterials |
|
35 | (16) |
|
|
35 | (1) |
|
3.2 Medical Applications of Metals |
|
|
36 | (3) |
|
3.3 Types and Properties of Biomedical Metals |
|
|
39 | (8) |
|
|
39 | (1) |
|
3.3.2 Cobalt-Chromium Alloys |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (1) |
|
3.3.5 Nickel-Titanium Alloy (Nitinol) |
|
|
44 | (2) |
|
3.3.6 Magnesium-Based Biodegradable Alloys |
|
|
46 | (1) |
|
3.4 Surface Properties of Metal Implants for Osseointegration |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
4 Ceramics |
|
51 | (14) |
|
|
51 | (1) |
|
4.2 Manufacturing Ceramics |
|
|
52 | (1) |
|
4.3 Structural Compositions of Ceramics |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (7) |
|
4.5.1 Examples for Bioceramics |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
4.5.4 Calcium Phosphate Ceramics (CPC) |
|
|
58 | (1) |
|
4.5.5 Bioactive Glasses (Glass Ceramics) |
|
|
59 | (3) |
|
4.6 Ceramics, Bioglasses, and Composites for Biomedical Applications |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
64 | (1) |
5 Polymers as Biomaterials |
|
65 | (18) |
|
5.1 Types of Polymerization Reactions |
|
|
65 | (6) |
|
5.1.1 Chain Growth (Addition) Polymerization |
|
|
65 | (3) |
|
5.1.2 Step Growth Polymerization |
|
|
68 | (1) |
|
5.1.3 Click Polymerization |
|
|
68 | (2) |
|
5.1.4 ATRP Polymerization |
|
|
70 | (1) |
|
5.1.5 RAFT Polymerization |
|
|
70 | (1) |
|
5.2 Polymerization Techniques |
|
|
71 | (1) |
|
5.2.1 Bulk Polymerization |
|
|
71 | (1) |
|
5.2.2 Solution Polymerization |
|
|
71 | (1) |
|
5.2.3 Suspension Polymerization |
|
|
71 | (1) |
|
5.2.4 Emulsion Polymerization |
|
|
72 | (1) |
|
|
72 | (3) |
|
5.3.1 Linear, Branched, and Cross-linked Polymers |
|
|
72 | (2) |
|
5.3.2 Thermoplastics, Thermosets, and Elastomers |
|
|
74 | (1) |
|
|
74 | (1) |
|
5.4 Properties of Polymers |
|
|
75 | (5) |
|
5.4.1 Conducting Polymers |
|
|
75 | (2) |
|
5.4.2 Shape Memory Polymers |
|
|
77 | (1) |
|
5.4.3 Degradation/Deterioration |
|
|
77 | (3) |
|
|
80 | (1) |
|
|
81 | (2) |
6 Carbon as a Biomaterial |
|
83 | (12) |
|
|
83 | (1) |
|
6.2 Pyrolytic Carbon (PC) |
|
|
83 | (2) |
|
|
85 | (1) |
|
6.4 Active Charcoal (Activated Carbon) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
6.7 Carbon Products as Coating Materials |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
92 | (3) |
7 Building Blocks of the Human Body |
|
95 | (22) |
|
|
95 | (1) |
|
|
95 | (4) |
|
7.3 Polynucleotides: DNA and RNA |
|
|
99 | (3) |
|
7.4 Polysaccharides/Carbohydrates |
|
|
102 | (3) |
|
|
105 | (3) |
|
|
106 | (1) |
|
|
107 | (1) |
|
7.6 Some Important Structural Molecules |
|
|
108 | (6) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (2) |
|
7.6.5 Chondroitin Sulfate |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (3) |
8 Composites as Biomaterials |
|
117 | (14) |
|
|
117 | (1) |
|
8.2 Limitations of Composites |
|
|
118 | (1) |
|
8.3 Biomedical Composites |
|
|
118 | (1) |
|
8.4 Polymer Matrix Composites (PMCs) |
|
|
119 | (2) |
|
8.5 Ceramic Matrix Composites (CMCs) |
|
|
121 | (1) |
|
8.6 Metal Matrix Composites (MMCs) |
|
|
122 | (1) |
|
8.7 Constituents and Classification of Biocomposites |
|
|
123 | (1) |
|
8.8 Bone Structure: A Natural Composite |
|
|
124 | (3) |
|
|
127 | (1) |
|
8.10 Surface Modifications: A Route to Composites |
|
|
128 | (1) |
|
8.11 Tissue Engineering Scaffolds |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
130 | (1) |
9 Fundamentals of Human Biology and Anatomy |
|
131 | (10) |
|
9.1 Fundamentals of Human Biology and Anatomy |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (5) |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
10 Tissue-Biomaterial Interactions |
|
141 | (18) |
|
|
141 | (1) |
|
10.2 Interaction Between the Biomaterial Surface and the Tissue |
|
|
141 | (5) |
|
10.2.1 The Polymeric Materials |
|
|
142 | (2) |
|
10.2.2 The Surface of the Metallic Materials |
|
|
144 | (1) |
|
10.2.3 The Surface of the Ceramic Materials |
|
|
145 | (1) |
|
10.3 Effect of the Biological Medium on Biomaterials |
|
|
146 | (3) |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
148 | (1) |
|
10.4 Effect of Biomaterials on Cells |
|
|
149 | (2) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
10.4.4 Metabolic Activity and Proliferation |
|
|
150 | (1) |
|
|
150 | (1) |
|
10.5 Effect of Biomaterials on the Biological Tissues |
|
|
151 | (1) |
|
10.6 Responses of the Body to Implantation |
|
|
152 | (4) |
|
|
152 | (2) |
|
|
154 | (1) |
|
10.6.3 Responses to Biomaterials During and After the Healing |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (2) |
11 Biocompatibility |
|
159 | (14) |
|
11.1 General Introduction |
|
|
159 | (2) |
|
11.2 International Standard 10993 |
|
|
161 | (5) |
|
|
165 | (1) |
|
|
166 | (2) |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (3) |
|
11.4.1 The Main Criteria for a Medical Device |
|
|
169 | (1) |
|
11.4.2 The Categories of the Devices According to the Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA, USA) |
|
|
170 | (1) |
|
11.4.3 Clinical Trial Phases |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (2) |
12 Hemocompatibility |
|
173 | (14) |
|
|
173 | (1) |
|
|
173 | (3) |
|
12.2.1 The Elements of the Circulatory System |
|
|
174 | (2) |
|
12.3 Blood Coagulation and Clotting Factors |
|
|
176 | (2) |
|
12.4 Factors Influencing Hemocompatibility |
|
|
178 | (2) |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
181 | (1) |
|
12.7 Testing for Hemocompatibility |
|
|
182 | (3) |
|
12.7.1 Protein Adsorption Tests |
|
|
182 | (1) |
|
12.7.2 Blood Clotting Tests |
|
|
183 | (1) |
|
12.7.3 Hemolytic Activity Tests |
|
|
184 | (1) |
|
12.7.4 Some Commercial Vascular Grafts in the Market |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
13 Sterilization of Biomaterials |
|
187 | (12) |
|
|
187 | (1) |
|
13.2 Methods of Sterilization |
|
|
187 | (5) |
|
13.2.1 Dry Heat Sterilization |
|
|
188 | (1) |
|
13.2.2 Steam Under Pressure (Autoclaving) |
|
|
188 | (1) |
|
13.2.3 Ethylene Oxide (EtO) Gas Sterilization |
|
|
188 | (1) |
|
13.2.4 Vaporized Hydrogen Peroxide |
|
|
189 | (1) |
|
13.2.5 Ionizing Radiation |
|
|
189 | (2) |
|
13.2.6 Chemical Sterilization |
|
|
191 | (1) |
|
13.3 The Influence of Sterilization Methods on Biomaterials |
|
|
192 | (5) |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
14 Biomaterials and Devices in Soft Tissue Augmentation |
|
199 | (20) |
|
|
199 | (1) |
|
|
199 | (7) |
|
14.2.1 Characteristics of Suture Materials |
|
|
199 | (1) |
|
14.2.2 Classification of Sutures |
|
|
200 | (6) |
|
|
206 | (4) |
|
14.3.1 Synthetic Tissue Adhesives |
|
|
206 | (1) |
|
14.3.2 Biological Adhesives |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (1) |
|
|
211 | (3) |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
14.6 Tissue Augmentation and Cosmetic Application |
|
|
214 | (1) |
|
|
215 | (1) |
|
14.8 Breast Reconstruction Strategies |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
217 | (2) |
15 Biomaterials and Devices in Hard Tissue Augmentation |
|
219 | (14) |
|
|
219 | (1) |
|
15.2 Internal Fixation Materials for Fractures |
|
|
220 | (5) |
|
|
221 | (3) |
|
15.2.2 Screws, Pins, Rods, and Wires |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (2) |
|
|
228 | (2) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (2) |
16 Blood Interfacing Applications |
|
233 | (24) |
|
16.1 Blood Interfacing Implants and Hemocompatibility |
|
|
233 | (1) |
|
|
234 | (3) |
|
16.2.1 Important Parameters in Vascular Graft Design |
|
|
235 | (2) |
|
16.3 Tissue-Engineered Vascular Grafts |
|
|
237 | (2) |
|
|
239 | (5) |
|
16.4.1 Heart Valve Replacement |
|
|
240 | (1) |
|
16.4.2 Bioprosthetic Heart Valves (Allografts and Xenografts) |
|
|
240 | (1) |
|
16.4.3 Prosthetic Heart Valves |
|
|
240 | (4) |
|
|
244 | (3) |
|
16.6 Stents and Assist Devices |
|
|
247 | (1) |
|
16.6.1 Restenosis and Drug-Eluting Stents (DES) |
|
|
247 | (1) |
|
16.7 Membrane Oxygenators |
|
|
248 | (3) |
|
16.7.1 Comparison with the Lungs in Terms of Rate of Transference, Surface Area, and Oxygenation Efficiency |
|
|
250 | (1) |
|
16.7.2 Hollow Fiber Oxygenators |
|
|
250 | (1) |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
254 | (3) |
17 Controlled Release Systems |
|
257 | (24) |
|
|
257 | (1) |
|
17.2 The Journey of a Drug Molecule in the Body |
|
|
257 | (3) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (1) |
|
17.2.4 Elimination and Excretion |
|
|
260 | (1) |
|
17.3 Advantages of Controlled Drug Delivery |
|
|
260 | (1) |
|
17.4 Methods to Achieve Prolonged or Sustained Drug Delivery |
|
|
261 | (4) |
|
|
261 | (1) |
|
|
262 | (3) |
|
17.5 Parameters Important in Achieving Controlled Release |
|
|
265 | (3) |
|
17.5.1 The Properties of the Drug |
|
|
266 | (2) |
|
17.6 The Properties of the Drug Carrier |
|
|
268 | (1) |
|
17.7 The Pharmacokinetics of Drug Bioavailability |
|
|
269 | (2) |
|
|
270 | (1) |
|
17.8 Classification of CRS Systems |
|
|
271 | (3) |
|
17.8.1 Stability Related Classification: Erodible and Nonerodible Systems |
|
|
271 | (1) |
|
17.8.2 Shape-Related Classification |
|
|
272 | (2) |
|
17.9 Responsiveness Related Classification |
|
|
274 | (3) |
|
17.9.1 pH-Responsive Systems |
|
|
275 | (1) |
|
17.9.2 Temperature-Responsive Systems |
|
|
275 | (1) |
|
17.9.3 Photoresponsive Systems |
|
|
275 | (2) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (2) |
18 Tissue Engineering and Regenerative Medicine |
|
281 | (22) |
|
18.1 Important Concepts: Development of Tissue Engineering and Regenerative Medicine |
|
|
281 | (1) |
|
18.2 Definition of Tissue Engineering |
|
|
281 | (2) |
|
18.3 Components of Tissue Engineering |
|
|
283 | (1) |
|
|
283 | (10) |
|
|
284 | (3) |
|
18.4.2 The Scaffold Material |
|
|
287 | (2) |
|
18.4.3 The Scaffold Chemistry |
|
|
289 | (3) |
|
18.4.4 Production of Scaffolds |
|
|
292 | (1) |
|
|
293 | (3) |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (4) |
|
|
300 | (1) |
|
|
300 | (3) |
19 Nano- and Microarchitecture of Biomaterial Surfaces |
|
303 | (28) |
|
19.1 Importance of Nanoness |
|
|
303 | (1) |
|
|
303 | (3) |
|
19.2.1 Transport of Nanoparticles |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
305 | (1) |
|
19.2.4 A Negative and a Positive Effect of Nanosize |
|
|
306 | (1) |
|
|
306 | (2) |
|
19.4 Nanosurfaces and Coats |
|
|
308 | (2) |
|
19.5 Nano- and Micro-features (NMF) and Their Importance in Implant Performance |
|
|
310 | (2) |
|
19.5.1 Biological Macromolecules and Natural NMF |
|
|
310 | (1) |
|
19.5.2 NMF on Biomaterial Surfaces |
|
|
311 | (1) |
|
19.5.3 Physical, and Chemical and Biological NMF |
|
|
312 | (1) |
|
19.6 Patterning Techniques |
|
|
312 | (6) |
|
19.6.1 Physical Patterning |
|
|
313 | (3) |
|
19.6.2 Chemical Patterning |
|
|
316 | (1) |
|
19.6.3 Biological Patterning |
|
|
316 | (2) |
|
19.7 Influence of Surface Topography on Cell Response |
|
|
318 | (6) |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
323 | (1) |
|
19.7.6 Stem Cells (MSCs) and Other Cells |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (6) |
Index |
|
331 | |