Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of High-Dimensional Statistics: With Exercises and R Labs

  • Formāts: PDF+DRM
  • Sērija : Springer Texts in Statistics
  • Izdošanas datums: 16-Nov-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030737924
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Texts in Statistics
  • Izdošanas datums: 16-Nov-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030737924

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.

1 Introduction
1(36)
1.1 Embracing High-Dimensionality
2(3)
1.2 Statistical Limitations of Classical Estimators
5(5)
1.3 Incorporating Prior Information
10(3)
1.4 Regularization for Increasing the Numerical Stability*
13(5)
1.5 Outlook
18(1)
1.6 Exercises
19(6)
1.7 R Lab: Least-Squares vs. Ridge Estimation
25(9)
1.8 Notes and References
34(3)
2 Linear Regression
37(44)
2.1 Overview
38(3)
2.2 Sparsity-Inducing Prior Functions
41(4)
2.3 Post-Processing Methods
45(3)
2.4 Holder Inequality*
48(5)
2.5 Optimality Conditions*
53(10)
2.6 Exercises
63(8)
2.7 R Lab: Overfitting
71(6)
2.8 Notes and References
77(4)
3 Graphical Models
81(28)
3.1 Overview
82(3)
3.2 Gaussian Graphical Models
85(2)
3.3 Maximum Regularized Likelihood Estimation
87(4)
3.4 Neighborhood Selection
91(4)
3.5 Exercises
95(3)
3.6 R Lab: Estimating a Gene-Gene Coactivation Network
98(9)
3.7 Notes and References
107(2)
4 Tuning-Parameter Calibration
109(30)
4.1 Overview
110(3)
4.2 Bounds on the Lasso's Effective Noise
113(3)
4.3 Cross-Validation
116(5)
4.4 Adaptive Validation
121(6)
4.5 Exercises
127(4)
4.6 R Lab: Cross-Validation
131(4)
4.7 Notes and References
135(4)
5 Inference
139(30)
5.1 One-Step Estimators
140(6)
5.2 Confidence Intervals
146(7)
5.3 Exercises
153(4)
5.4 R Lab: Confidence Intervals in Low and High Dimensions
157(9)
5.5 Notes and References
166(3)
6 Theory I: Prediction
169(42)
6.1 Overview
170(5)
6.2 Basic Inequalities
175(7)
6.3 Prediction Guarantees
182(10)
6.4 Prediction Guarantees for Sparse and Weakly Correlated Models
192(12)
6.5 Exercises
204(4)
6.6 Notes and References
208(3)
7 Theory II: Estimation and Support Recovery
211(28)
7.1 Overview
212(1)
7.2 Estimation Guarantees in -loss
213(5)
7.3 Estimation Guarantees in -loss
218(13)
7.4 Support Recovery Guarantees
231(4)
7.5 Exercises
235(2)
7.6 Notes and References
237(2)
Supplementary Information
239(99)
A Solutions
240(69)
A.1 Solutions for Chap. 1
240(17)
A.2 Solutions for Chap. 2
257(14)
A.3 Solutions for Chap. 3
271(14)
A.4 Solutions for Chap. 4
285(3)
A.5 Solutions for Chap. 5
288(7)
A.6 Solutions for Chap. 6
295(5)
A.7 Solutions for Chap. 7
300(9)
B Mathematical Background
309(29)
B.1 Analysis
309(3)
B.2 Matrix Algebra
312(26)
Bibliography 338(7)
Index 345
Johannes Lederer is a Professor of Statistics at the Ruhr-University Bochum, Germany. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught high-dimensional statistics to applied and mathematical audiences alike, e.g. as a Visiting Professor at the Institute of Statistics, Biostatistics, and Actuarial Sciences at UC Louvain, and at the University of Hong Kong Business School.