Atjaunināt sīkdatņu piekrišanu

Fundamentals of High-Dimensional Statistics: With Exercises and R Labs 2022 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 355 pages, height x width: 235x155 mm, weight: 569 g, 21 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 34 illus., 21 illus. in color., 1 Paperback / softback
  • Sērija : Springer Texts in Statistics
  • Izdošanas datums: 18-Nov-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030737942
  • ISBN-13: 9783030737948
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 78,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 91,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 355 pages, height x width: 235x155 mm, weight: 569 g, 21 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 34 illus., 21 illus. in color., 1 Paperback / softback
  • Sērija : Springer Texts in Statistics
  • Izdošanas datums: 18-Nov-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030737942
  • ISBN-13: 9783030737948
Citas grāmatas par šo tēmu:

This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.

Preface.- Notation.- Introduction.- Linear Regression.- Graphical
Models.- Tuning-Parameter Calibration.- Inference.- Theory I:
Prediction.- Theory II: Estimation and Support Recovery.- A Solutions.- B
Mathematical Background.- Bibliography.- Index. 
Johannes Lederer is a Professor of Statistics at the Ruhr-University Bochum, Germany. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught high-dimensional statistics to applied and mathematical audiences alike, e.g. as a Visiting Professor at the Institute of Statistics, Biostatistics, and Actuarial Sciences at UC Louvain, and at the University of Hong Kong Business School.