Preface |
|
ix | |
|
PART I THE ALGEBRAIC BACKGROUND |
|
|
|
|
3 | (22) |
|
|
3 | (6) |
|
1.2 Finite Abelian Groups |
|
|
9 | (2) |
|
1.3 Finite Permutation Groups |
|
|
11 | (6) |
|
|
17 | (1) |
|
|
18 | (4) |
|
1.6 p-Groups and Sylow Theorems |
|
|
22 | (3) |
|
|
25 | (29) |
|
2.1 Commutative Rings with 1 |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.3 Homomorphisms and Ideals |
|
|
27 | (2) |
|
|
29 | (2) |
|
|
31 | (4) |
|
2.6 The Ordered Set of Ideals in an Integral Domain |
|
|
35 | (1) |
|
|
36 | (2) |
|
|
38 | (3) |
|
2.9 Principal Ideal Domains and Euclidean Domains |
|
|
41 | (3) |
|
2.10 Polynomials Over Unique Factorization Domains |
|
|
44 | (3) |
|
|
47 | (1) |
|
2.12 Kronecker's Algorithm |
|
|
48 | (2) |
|
2.13 Eisenstein's Criterion |
|
|
50 | (1) |
|
|
51 | (3) |
|
3 Vector Spaces and Determinants |
|
|
54 | (15) |
|
|
54 | (6) |
|
3.2 The Infinite-Dimensional Case |
|
|
60 | (1) |
|
3.3 Characters and Automorphisms |
|
|
61 | (1) |
|
|
62 | (7) |
|
PART II THE THEORY OF FIELDS AND GALOIS THEORY |
|
|
|
|
69 | (12) |
|
|
69 | (1) |
|
|
70 | (3) |
|
4.3 Algebraic and Transcendental Extensions |
|
|
73 | (4) |
|
|
77 | (3) |
|
4.5 Monomorphisms of Algebraic Extensions |
|
|
80 | (1) |
|
5 Ruler and Compass Constructions |
|
|
81 | (4) |
|
5.1 Some Classical Problems |
|
|
81 | (1) |
|
|
81 | (4) |
|
|
85 | (13) |
|
|
85 | (1) |
|
|
86 | (3) |
|
6.3 The Extension of Monomorphisms |
|
|
89 | (5) |
|
|
94 | (4) |
|
|
98 | (5) |
|
|
98 | (3) |
|
7.2 Monomorphisms and Automorphisms |
|
|
101 | (2) |
|
|
103 | (9) |
|
|
103 | (1) |
|
8.2 Monomorphisms and Automorphisms |
|
|
104 | (2) |
|
|
106 | (1) |
|
|
106 | (2) |
|
8.5 Inseparable Polynomials |
|
|
108 | (4) |
|
9 The Fundamental Theorem of Galois Theory |
|
|
112 | (10) |
|
9.1 Field Automorphisms, Fixed Fields and Galois Groups |
|
|
112 | (1) |
|
|
113 | (2) |
|
9.3 The Size of a Galois Group is the Degree of the Extension |
|
|
115 | (1) |
|
9.4 The Galois Group of a Polynomial |
|
|
116 | (2) |
|
9.5 The Fundamental Theorem of Galois Theory |
|
|
118 | (4) |
|
|
122 | (4) |
|
|
122 | (4) |
|
11 Cyclotomic Polynomials and Cyclic Extensions |
|
|
126 | (14) |
|
11.1 Cyclotomic Polynomials |
|
|
126 | (2) |
|
|
128 | (1) |
|
11.3 The Galois Group of a Cyclotomic Polynomial |
|
|
129 | (2) |
|
11.4 A Necessary Condition |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
134 | (1) |
|
11.7 A Sufficient Condition |
|
|
135 | (2) |
|
|
137 | (3) |
|
|
140 | (6) |
|
12.1 Polynomials with Soluble Galois Groups |
|
|
140 | (1) |
|
12.2 Polynomials which are Soluble by Radicals |
|
|
141 | (5) |
|
|
146 | (3) |
|
13.1 Fermat Primes and Fermat Numbers |
|
|
146 | (1) |
|
|
147 | (1) |
|
13.3 Constructing a Regular Pentagon |
|
|
148 | (1) |
|
14 Polynomials of Low Degree |
|
|
149 | (7) |
|
14.1 Quadratic Polynomials |
|
|
149 | (1) |
|
|
150 | (3) |
|
|
153 | (3) |
|
|
156 | (5) |
|
|
156 | (1) |
|
15.2 Polynomials in Zp[ x] |
|
|
157 | (1) |
|
15.3 Polynomials of Low Degree over a Finite Field |
|
|
158 | (3) |
|
|
161 | (3) |
|
|
164 | (6) |
|
|
165 | (1) |
|
17.2 The Theorem of the Primitive Element |
|
|
166 | (2) |
|
17.3 The Normal Basis Theorem |
|
|
168 | (2) |
|
18 The Algebraic Closure of a Field |
|
|
170 | (7) |
|
|
170 | (1) |
|
18.2 The Existence of an Algebraic Closure |
|
|
171 | (4) |
|
18.3 The Uniqueness of an Algebraic Closure |
|
|
175 | (1) |
|
|
176 | (1) |
|
19 Transcendental Elements and Algebraic Independence |
|
|
177 | (9) |
|
19.1 Transcendental Elements and Algebraic Independence |
|
|
177 | (3) |
|
|
180 | (1) |
|
19.3 Transcendence Degree |
|
|
181 | (1) |
|
19.4 The Tower Law for Transcendence Degree |
|
|
182 | (1) |
|
|
183 | (3) |
|
20 Generic and Symmetric Polynomials |
|
|
186 | (3) |
|
20.1 Generic and Symmetric Polynomials |
|
|
186 | (3) |
Appendix: The Axiom of Choice |
|
189 | (3) |
Index |
|
192 | |