Atjaunināt sīkdatņu piekrišanu

E-grāmata: Galois Theory and Its Algebraic Background

(University of Cambridge)
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Jul-2021
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108981880
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 41,62 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Jul-2021
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108981880
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Galois Theory, the theory of polynomial equations and their solutions, is one of the most fascinating and beautiful subjects of pure mathematics. Using group theory and field theory, it provides a complete answer to the problem of the solubility of polynomial equations by radicals: that is, determining when and how a polynomial equation can be solved by repeatedly extracting roots using elementary algebraic operations. This textbook contains a fully detailed account of Galois Theory and the algebra that it needs and is suitable both for those following a course of lectures and the independent reader (who is assumed to have no previous knowledge of Galois Theory). The second edition has been significantly revised and re-ordered; the first part develops the basic algebra that is needed, and the second a comprehensive account of Galois Theory. There are applications to ruler-and- compass constructions, and to the solution of classical mathematical problems of ancient times. There are new exercises throughout, and carefully-selected examples will help the reader develop a clear understanding of the mathematical theory.

Galois Theory is the theory of polynomial equations and their solutions. Suitable for course-following undergraduates and the independent reader, this textbook gives a full account of Galois Theory and the necessary background algebra. This second edition has been revised and re-ordered, with new exercises and examples throughout.

Recenzijas

'Garling's book presents Galois theory in a style which is at once readable and compact. The necessary prerequisites are developed in the early chapters only to the extent that they are needed later. The proofs of the lemmas and main theorems are presented in as concrete a manner as possible, without unnecessary abstraction. Yet they seem remarkably short, without the difficulties being glossed over. In fact the approach throughout the book is down-to-earth and concrete I can heartily recommend this book as an undergraduate text.' Bulletin of the London Mathematical Society

Papildus informācija

This textbook contains a full account of Galois Theory and the algebra that it needs, with exercises, examples and applications.
Part I. The Algebraic Background:
1. Groups;
2. Integral domains;
3. Vector spaces and determinants; Part II. The Theory of Fields, and Galois Theory:
4. Field extensions;
5. Ruler and compass constructions;
6. Splitting fields;
7. Normal extensions;
8. Separability;
9. The fundamental theorem of Galois theory;
10. The discriminant;
11. Cyclotomic polynomials and cyclic extensions;
12. Solution by radicals;
13. Regular polygons;
14. Polynomials of low degree;
15. Finite fields;
16. Quintic polynomials;
17. Further theory;
18. The algebraic closure of a field;
19. Transcendental elements and algebraic independence;
20. Generic and symmetric polynomials; Appendix: the axiom of choice; Index.
D. J. H. Garling is Emeritus Reader in Mathematical Analysis at the University of Cambridge and Fellow of St John's College, Cambridge. He has fifty years' experience of teaching undergraduate students and has written several books on mathematics, including Inequalities: A Journey into Linear Analysis (Cambridge, 2007) and A Course in Mathematical Analysis (Three volumes, Cambridge, 20132014).