Atjaunināt sīkdatņu piekrišanu

Health Information Processing: 8th China Conference, CHIP 2022, Hangzhou, China, October 2123, 2022, Revised Selected Papers 1st ed. 2023 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 212 pages, height x width: 235x155 mm, weight: 355 g, 43 Illustrations, color; 16 Illustrations, black and white; XIV, 212 p. 59 illus., 43 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 1772
  • Izdošanas datums: 22-Feb-2023
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9811998647
  • ISBN-13: 9789811998645
  • Mīkstie vāki
  • Cena: 69,22 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 81,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 212 pages, height x width: 235x155 mm, weight: 355 g, 43 Illustrations, color; 16 Illustrations, black and white; XIV, 212 p. 59 illus., 43 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 1772
  • Izdošanas datums: 22-Feb-2023
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9811998647
  • ISBN-13: 9789811998645
This book constitutes refereed proceedings of the 8th China Conference on China Health Information Processing Conference 2022 held in Hangzhou, China from August 26–28, 2022.

The 14 full papers presented in this volume were carefully reviewed and selected from a total of 35 submissions. The papers in the volume are organised according to the following topical headings: healthcare natural language processing;healthcare data mining and applications
Healthcare Natural Language Processing.- Corpus Construction for
Named-Entity and Entity Relations for Electronic Medical Records of
Cardiovascular Disease.- Hybrid Granularity-based medical event extraction in
Chinese electronic medical records.- Infusing Dependency Syntax Information
into a Transformer Model for Document-Level Relation Extraction from
Biomedical Literature.- A Review of Biomedical Event Trigger Word Detection.-
BG-INT: An Entity Alignment Interaction Model Based on BERT and GCN.- An
Semantic Similarity Matching Method for Chinese Medical Question Text.- A
Biomedical Named Entity Recognition Framework with Multi-Granularity Prompt
Tuning.- Healthcare Data Mining and Applications.- Automatic Extraction of
Genomic Variants for Locating Precision Oncology Clinical Trials.-
Identification of sepsis subphenotypes based on bi-directional long
short-term memory Auto-Encoder using real-time laboratory data collected from
intensive care units.- Machine Learning for Multimodal Electronic Health
Records-based Research: Challenges and Perspectives.- An End-to-End Knowledge
Graph Based Question Answering Approach for COVID-19.- Discovering
Combination Patterns of Traditional Chinese Medicine for the Treatment of
Gouty Arthritis with Renal Dysfunction.- Automatic Classification of Nursing
Adverse Events Using a Hybrid Neural Network Model.- Node research on the
involvement of Chinas carbon tax policy in the context of COVID-19.