Atjaunināt sīkdatņu piekrišanu

E-grāmata: Health Information Processing: 8th China Conference, CHIP 2022, Hangzhou, China, October 21-23, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes refereed proceedings of the 8th China Conference on China Health Information Processing Conference 2022 held in Hangzhou, China from August 26–28, 2022.

The 14 full papers presented in this volume were carefully reviewed and selected from a total of 35 submissions. The papers in the volume are organised according to the following topical headings: healthcare natural language processing;healthcare data mining and applications
Healthcare Natural Language Processing.- Corpus Construction for
Named-Entity and Entity Relations for Electronic Medical Records of
Cardiovascular Disease.- Hybrid Granularity-based medical event extraction in
Chinese electronic medical records.- Infusing Dependency Syntax Information
into a Transformer Model for Document-Level Relation Extraction from
Biomedical Literature.- A Review of Biomedical Event Trigger Word Detection.-
BG-INT: An Entity Alignment Interaction Model Based on BERT and GCN.- An
Semantic Similarity Matching Method for Chinese Medical Question Text.- A
Biomedical Named Entity Recognition Framework with Multi-Granularity Prompt
Tuning.- Healthcare Data Mining and Applications.- Automatic Extraction of
Genomic Variants for Locating Precision Oncology Clinical Trials.-
Identification of sepsis subphenotypes based on bi-directional long
short-term memory Auto-Encoder using real-time laboratory data collected from
intensive care units.- Machine Learning for Multimodal Electronic Health
Records-based Research: Challenges and Perspectives.- An End-to-End Knowledge
Graph Based Question Answering Approach for COVID-19.- Discovering
Combination Patterns of Traditional Chinese Medicine for the Treatment of
Gouty Arthritis with Renal Dysfunction.- Automatic Classification of Nursing
Adverse Events Using a Hybrid Neural Network Model.- Node research on the
involvement of Chinas carbon tax policy in the context of COVID-19.