Preface |
|
v | |
Part One |
|
|
The Topology for Hyperspaces |
|
|
3 | (28) |
|
The General Notion of a Hyperspace |
|
|
3 | (6) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (7) |
|
Proof That Hd Is a Metric |
|
|
11 | (1) |
|
A Result about Metrizability of CL (X) |
|
|
12 | (2) |
|
|
14 | (2) |
|
Metrizability of Hyperspaces |
|
|
16 | (4) |
|
|
16 | (2) |
|
Metrizability and Compactness of CL(X) |
|
|
18 | (1) |
|
|
19 | (1) |
|
Convergence in Hyperspaces |
|
|
20 | (11) |
|
L-convergence, Tv-convergence |
|
|
20 | (2) |
|
Relationships between L-convergence and Tv-convergenece |
|
|
22 | (3) |
|
When X Is Compact Hausdorff |
|
|
25 | (1) |
|
Countable Compactness Is Necessary |
|
|
26 | (1) |
|
|
26 | (2) |
|
|
28 | (3) |
|
Examples: Geometric Models for Hyperspaces |
|
|
31 | (44) |
|
C(X) for Certain Finite Graphs X |
|
|
33 | (13) |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (3) |
|
|
39 | (5) |
|
|
44 | (1) |
|
|
44 | (2) |
|
C(X) When X Is the Hairy Point |
|
|
46 | (4) |
|
|
50 | (14) |
|
C(X) When X Is the Circle-with-a-Spiral |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (6) |
|
|
59 | (1) |
|
|
59 | (3) |
|
|
62 | (2) |
|
2X When X Is Any Countably Infinite Compactum |
|
|
64 | (11) |
|
|
65 | (1) |
|
|
65 | (2) |
|
|
67 | (1) |
|
Uniqueness of Compactifications |
|
|
67 | (3) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (3) |
|
2X and C(X) for Peano Continua X |
|
|
75 | (22) |
|
Preliminaries: Absolute Retracts, Z-sets, Torunczyk's Theorem |
|
|
76 | (4) |
|
|
79 | (1) |
|
Preliminaries: General Results about Peano Continua |
|
|
80 | (5) |
|
|
83 | (2) |
|
The Curtis-Schori Theorem for 2X and C(X) |
|
|
85 | (12) |
|
When 2XK and CK(X) Are Z-sets |
|
|
85 | (4) |
|
The Curtis-Schori Theorem |
|
|
89 | (1) |
|
Further Uses of Torunczyk's Theorem |
|
|
90 | (1) |
|
|
91 | (3) |
|
|
94 | (3) |
|
|
97 | (56) |
|
Preliminaries: Separation, Quasicomponents, Boundary Bumping |
|
|
97 | (8) |
|
|
103 | (2) |
|
A Brief Introduction to Whitney Maps |
|
|
105 | (5) |
|
Definition of a Whitney Map |
|
|
105 | (1) |
|
Existence of Whitney Maps |
|
|
106 | (2) |
|
|
108 | (2) |
|
Order Arcs and Arcwise Connectedness of 2X and C(X) |
|
|
110 | (9) |
|
|
110 | (1) |
|
Arcwise Connectedness of 2X and C(X) |
|
|
110 | (4) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (2) |
|
Existence of an Order Arc from A0 to A1 |
|
|
119 | (8) |
|
Necessary and Sufficient Condition |
|
|
119 | (3) |
|
Application: Homogeneous Hyperspaces |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
124 | (3) |
|
|
127 | (7) |
|
Kelley's Notion of a Segment |
|
|
127 | (1) |
|
|
128 | (3) |
|
Addendum: Extending Whitney Maps |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (2) |
|
Spaces of Segments, Sw(H) |
|
|
134 | (9) |
|
|
134 | (2) |
|
|
136 | (2) |
|
Sw(2X), SW(C(X)) When X Is a Peano Continuum |
|
|
138 | (2) |
|
Application: Mapping the Cantor Fan Onto 2X and C(X) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (2) |
|
When C(X) Is Uniquely Arcwise Connected |
|
|
143 | (10) |
|
Structure of Arcs in C(X) When X Is Hereditarily Indecomposable |
|
|
145 | (1) |
|
Uniqueness of Arcs in C(X) When X Is Hereditarily Indecomposable |
|
|
146 | (2) |
|
The Characterization Theorem |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (4) |
|
Shape and Contractibility of Hyperspaces |
|
|
153 | (28) |
|
2X and C(X) as Nested Intersections of ARs |
|
|
153 | (11) |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (2) |
|
Whitney Levels in C(X) Are Continua |
|
|
159 | (1) |
|
2X, C(X) Have Trivial Shape |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (3) |
|
|
164 | (17) |
|
|
164 | (2) |
|
X Contractible, X Hereditarily Indecomposable |
|
|
166 | (1) |
|
Property (k) (Kelley's Property) |
|
|
167 | (1) |
|
Theorem about Property (k) |
|
|
168 | (5) |
|
|
173 | (2) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (4) |
|
Hyperspaces and the Fixed Point Property |
|
|
181 | (24) |
|
Preliminaries: Brouwer's Theorem, Universal Maps, Lokuciewski's Theorem |
|
|
181 | (6) |
|
|
186 | (1) |
|
|
186 | (1) |
|
Hyperspaces with the Fixed Point Property |
|
|
187 | (18) |
|
|
187 | (1) |
|
|
187 | (3) |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
193 | (3) |
|
Hereditarily Indecomposable Continua |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (2) |
|
|
199 | (6) |
Part Two |
|
|
|
205 | (26) |
|
|
205 | (2) |
|
|
206 | (1) |
|
Open and Monotone Whitney Maps for 2X |
|
|
207 | (9) |
|
|
215 | (1) |
|
|
216 | (11) |
|
|
225 | (2) |
|
A Metric on Hyperspaces Defined by Whitney Maps |
|
|
227 | (4) |
|
|
227 | (1) |
|
|
228 | (3) |
|
Whitney Properties and Whitney-Reversible Properties |
|
|
231 | (74) |
|
|
231 | (3) |
|
|
233 | (1) |
|
|
234 | (4) |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (6) |
|
|
245 | (1) |
|
|
245 | (2) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (4) |
|
|
251 | (1) |
|
|
251 | (2) |
|
|
253 | (1) |
|
C*-Smoothness, Class(W) and Covering Property |
|
|
253 | (4) |
|
|
256 | (1) |
|
Cech Cohomology Groups, Acyclicity |
|
|
257 | (1) |
|
Chainability (Arc-Likeness) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
259 | (2) |
|
|
260 | (1) |
|
Cone = Hyperspace Property |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (3) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (2) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
271 | (2) |
|
|
272 | (1) |
|
|
273 | (3) |
|
|
276 | (1) |
|
|
276 | (3) |
|
|
278 | (1) |
|
|
279 | (2) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (2) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
Pseudo-Solenoids and the Pseudo-Circle |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
|
287 | (3) |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (13) |
|
|
293 | (1) |
|
Table Summarizing Chapter VIII |
|
|
294 | (5) |
|
|
299 | (6) |
|
|
305 | (28) |
|
|
305 | (9) |
|
|
313 | (1) |
|
Spaces of the Form CE (X,t) Are ARs |
|
|
314 | (5) |
|
|
318 | (1) |
|
Absolutely C*-Smooth, Class(W) and Covering Property |
|
|
319 | (7) |
|
|
325 | (1) |
|
|
326 | (7) |
|
|
329 | (4) |
|
General Properties of Hyperspaces |
|
|
333 | (14) |
|
|
333 | (4) |
|
|
336 | (1) |
|
|
337 | (5) |
|
|
341 | (1) |
|
Neighborhoods of X in the Hyperspaces |
|
|
342 | (5) |
|
|
344 | (1) |
|
|
345 | (2) |
|
|
347 | (16) |
|
Previous Results about Dimension of Hyperspaces |
|
|
347 | (2) |
|
|
348 | (1) |
|
Dimension of C(X) for 2-Dimensional Continua X |
|
|
349 | (9) |
|
|
357 | (1) |
|
Dimension of C(X) for 1-Dimensional Continua X |
|
|
358 | (5) |
|
|
359 | (4) |
|
Special Types of Maps between Hyperspaces |
|
|
363 | (32) |
|
|
363 | (8) |
|
|
368 | (3) |
|
Retractions between Hyperspaces |
|
|
371 | (10) |
|
|
379 | (2) |
|
|
381 | (14) |
|
|
387 | (3) |
|
|
390 | (5) |
|
More on Contractibility of Hyperspaces |
|
|
395 | (18) |
|
More on Contractible Hyperspaces |
|
|
395 | (18) |
|
Contractibility vs. Smoothness in Hyperspaces |
|
|
395 | (4) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (1) |
|
Maps Preserving Hyperspace Contractibility |
|
|
403 | (2) |
|
More on Kelley's Property |
|
|
405 | (1) |
|
|
406 | (2) |
|
|
408 | (5) |
|
Products, Cones and Hyperspaces |
|
|
413 | (24) |
|
Hyperspaces Which Are Products |
|
|
413 | (11) |
|
|
414 | (1) |
|
|
415 | (6) |
|
Proof of the Main Theorem |
|
|
421 | (2) |
|
|
423 | (1) |
|
More on Hyperspaces and Cones |
|
|
424 | (13) |
|
|
431 | (3) |
|
|
434 | (3) |
|
|
437 | (60) |
|
Unsolved and Partially Solved Questions of [ 56] |
|
|
437 | (26) |
|
Solved Questions of [ 56] |
|
|
463 | (7) |
|
|
470 | (27) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
The Space of Whitney Levels for 2x |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
474 | (4) |
|
Literature Related to Hyperspaces of Continua Since 1978 |
|
|
478 | (19) |
Special Symbols |
|
497 | (2) |
Index |
|
499 | |