Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hyperspaces: Fundamentals and Recent Advances

(Morgantown, West Virginia, USA),
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 270,50 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Provides an overview of the fundamentals of hyperspaces, then surveys a range of recent research in the field, with emphasis on the hyperspaces 2x and C(X) , where X is a continuum. Discusses symmetric products, containment hyperspaces, selections, spaces of segments, and spaces of Whitney levels, and incorporates basic material on absolute retracts, infinite-dimensional topology, Z-sets, and the fixed point property. Presents both solved and unsolved problems in hyperspaces, including some appearing in print for the first time. Some problems addressed include the dimension problem, the n -od problem, and the product problem. Annotation c. by Book News, Inc., Portland, Or.

Presents hyperspace fundamentals, offering a basic overview and a foundation for further study. Topics include the topology for hyperspaces, examples of geometric models for hyperspaces, 2x and C(X) for Peano continua X, arcs in hyperspaces, the shape and contractability of hyperspaces, hyperspaces and the fixed point property, and Whitney maps. The text contains examples and exercises throughout, and provides proofs for most results.
Preface v
Part One
The Topology for Hyperspaces
3(28)
The General Notion of a Hyperspace
3(6)
Topological Invariance
5(1)
Specified Hyperspaces
6(1)
Exercises
7(2)
The Hausdorff Metric Hd
9(7)
Proof That Hd Is a Metric
11(1)
A Result about Metrizability of CL (X)
12(2)
Exercises
14(2)
Metrizability of Hyperspaces
16(4)
Metrizability of 2x
16(2)
Metrizability and Compactness of CL(X)
18(1)
Exercises
19(1)
Convergence in Hyperspaces
20(11)
L-convergence, Tv-convergence
20(2)
Relationships between L-convergence and Tv-convergenece
22(3)
When X Is Compact Hausdorff
25(1)
Countable Compactness Is Necessary
26(1)
Exercises
26(2)
References
28(3)
Examples: Geometric Models for Hyperspaces
31(44)
C(X) for Certain Finite Graphs X
33(13)
X an Arc
33(2)
X a Simple Closed Curve
35(1)
X a Noose
36(3)
X a Simple n-od
39(5)
Historical Comments
44(1)
Exercises
44(2)
C(X) When X Is the Hairy Point
46(4)
Exercises
50(14)
C(X) When X Is the Circle-with-a-Spiral
51(1)
Cones, Geometric Cones
51(2)
The Model for C(X)
53(6)
Knaster's Question
59(1)
When C(Y) ≈ Cone(Y)
59(3)
Exercises
62(2)
2X When X Is Any Countably Infinite Compactum
64(11)
Cantor Sets
65(1)
Preliminary Results
65(2)
Structure Theorem
67(1)
Uniqueness of Compactifications
67(3)
The Model for 2X
70(2)
Exercises
72(1)
References
72(3)
2X and C(X) for Peano Continua X
75(22)
Preliminaries: Absolute Retracts, Z-sets, Torunczyk's Theorem
76(4)
Exercises
79(1)
Preliminaries: General Results about Peano Continua
80(5)
Exercises
83(2)
The Curtis-Schori Theorem for 2X and C(X)
85(12)
When 2XK and CK(X) Are Z-sets
85(4)
The Curtis-Schori Theorem
89(1)
Further Uses of Torunczyk's Theorem
90(1)
Exercises
91(3)
References
94(3)
Arcs in Hyperspaces
97(56)
Preliminaries: Separation, Quasicomponents, Boundary Bumping
97(8)
Exercises
103(2)
A Brief Introduction to Whitney Maps
105(5)
Definition of a Whitney Map
105(1)
Existence of Whitney Maps
106(2)
Exercises
108(2)
Order Arcs and Arcwise Connectedness of 2X and C(X)
110(9)
Definition of Order Arc
110(1)
Arcwise Connectedness of 2X and C(X)
110(4)
Application: 2X ⊃ I∞
114(2)
Original Sources
116(1)
Exercises
117(2)
Existence of an Order Arc from A0 to A1
119(8)
Necessary and Sufficient Condition
119(3)
Application: Homogeneous Hyperspaces
122(2)
Original Sources
124(1)
Exercises
124(3)
Kelley's Segments
127(7)
Kelley's Notion of a Segment
127(1)
Results about Segments
128(3)
Addendum: Extending Whitney Maps
131(1)
Original Sources
132(1)
Exercises
132(2)
Spaces of Segments, Sw(H)
134(9)
Compactness
134(2)
SW(H) ≈ O(H)
136(2)
Sw(2X), SW(C(X)) When X Is a Peano Continuum
138(2)
Application: Mapping the Cantor Fan Onto 2X and C(X)
140(1)
Original Sources
141(1)
Exercises
141(2)
When C(X) Is Uniquely Arcwise Connected
143(10)
Structure of Arcs in C(X) When X Is Hereditarily Indecomposable
145(1)
Uniqueness of Arcs in C(X) When X Is Hereditarily Indecomposable
146(2)
The Characterization Theorem
148(1)
Original Sources
148(1)
Exercises
148(1)
References
149(4)
Shape and Contractibility of Hyperspaces
153(28)
2X and C(X) as Nested Intersections of ARs
153(11)
2X, C(X) Are Acyclic
155(1)
2X, C(X) Are crANR
155(2)
2X, C(X) Are Unicoherent
157(2)
Whitney Levels in C(X) Are Continua
159(1)
2X, C(X) Have Trivial Shape
160(1)
Original Sources
161(1)
Exercises
161(3)
Contractible Hyperspaces
164(17)
The Fundamental Theorem
164(2)
X Contractible, X Hereditarily Indecomposable
166(1)
Property (k) (Kelley's Property)
167(1)
Theorem about Property (k)
168(5)
X Peano, X Homogeneous
173(2)
Original Sources
175(1)
Exercises
176(1)
References
177(4)
Hyperspaces and the Fixed Point Property
181(24)
Preliminaries: Brouwer's Theorem, Universal Maps, Lokuciewski's Theorem
181(6)
Original Sources
186(1)
Exercises
186(1)
Hyperspaces with the Fixed Point Property
187(18)
Peano Continua
187(1)
Arc-like Continua
187(3)
Circle-like Continua
190(2)
A General Theorem
192(1)
Dendroids
193(3)
Hereditarily Indecomposable Continua
196(1)
Addendum: Dim[ C(X)] ≥ 2
196(1)
Original Sources
197(1)
Exercises
197(2)
References
199(6)
Part Two
Whitney Maps
205(26)
Existence and Extensions
205(2)
Exercises
206(1)
Open and Monotone Whitney Maps for 2X
207(9)
Exercises
215(1)
Admissible Whitney Maps
216(11)
Exercises
225(2)
A Metric on Hyperspaces Defined by Whitney Maps
227(4)
Exercises
227(1)
References
228(3)
Whitney Properties and Whitney-Reversible Properties
231(74)
Definitions
231(3)
Exercises
233(1)
ANR
234(4)
Exercises
236(2)
Aposyndesis
238(1)
Exercises
239(1)
AR
239(6)
Exercises
245(1)
Being an Arc
245(2)
Exercises
246(1)
Arc-Smoothness
247(1)
Arcwise Connectedness
247(4)
Exercises
251(1)
Being Atriodic
251(2)
Exercises
253(1)
C*-Smoothness, Class(W) and Covering Property
253(4)
Exercises
256(1)
Cech Cohomology Groups, Acyclicity
257(1)
Chainability (Arc-Likeness)
257(2)
Exercises
259(1)
Being a Circle
259(1)
Exercises
259(1)
Circle-Likeness
259(2)
Exercises
260(1)
Cone = Hyperspace Property
261(1)
Exercise
262(1)
Contractibility
262(3)
Exercises
264(1)
Convex Metric
265(1)
Exercises
265(1)
Cut Points
265(2)
Exercises
267(1)
Decomposability
267(1)
Exercises
268(1)
Dimension
268(2)
Exercises
269(1)
Fixed Point Property
270(1)
Exercises
270(1)
Fundamental Group
271(1)
Exercises
271(1)
Homogeneity
271(2)
Exercises
272(1)
Irreducibility
273(3)
Exercises
276(1)
Kelley's Property
276(3)
Exercises
278(1)
λ-Connectedness
279(2)
Exercises
280(1)
Local Connectedness
281(1)
Exercises
281(1)
n-Connectedness
281(2)
Exercises
283(1)
Planarity
283(1)
Exercises
284(1)
P-Likeness
284(2)
Exercises
285(1)
Pseudo-Arc
286(1)
Exercise
286(1)
Pseudo-Solenoids and the Pseudo-Circle
286(1)
R3-Continua
286(1)
Exercise
287(1)
Rational Continua
287(1)
Exercises
287(1)
Shape of Continua
287(3)
Solenoids
290(1)
Span
291(1)
Tree-Likeness
292(1)
Unicoherence
292(13)
Exercises
293(1)
Table Summarizing
Chapter VIII
294(5)
References
299(6)
Whitney Levels
305(28)
Finite Graphs
305(9)
Exercises
313(1)
Spaces of the Form CE (X,t) Are ARs
314(5)
Exercises
318(1)
Absolutely C*-Smooth, Class(W) and Covering Property
319(7)
Exercises
325(1)
Holes in Whitney Levels
326(7)
References
329(4)
General Properties of Hyperspaces
333(14)
Semi-Boundaries
333(4)
Exercises
336(1)
Cells in Hyperspaces
337(5)
Exercises
341(1)
Neighborhoods of X in the Hyperspaces
342(5)
Exercises
344(1)
References
345(2)
Dimension of C(X)
347(16)
Previous Results about Dimension of Hyperspaces
347(2)
Exercises
348(1)
Dimension of C(X) for 2-Dimensional Continua X
349(9)
Exercises
357(1)
Dimension of C(X) for 1-Dimensional Continua X
358(5)
References
359(4)
Special Types of Maps between Hyperspaces
363(32)
Selections
363(8)
Exercises
368(3)
Retractions between Hyperspaces
371(10)
Exercises
379(2)
Induced Maps
381(14)
Exercises
387(3)
References
390(5)
More on Contractibility of Hyperspaces
395(18)
More on Contractible Hyperspaces
395(18)
Contractibility vs. Smoothness in Hyperspaces
395(4)
R3-Sets
399(1)
Spaces of Finite Subsets
400(2)
Admissibility
402(1)
Maps Preserving Hyperspace Contractibility
403(2)
More on Kelley's Property
405(1)
Exercises
406(2)
References
408(5)
Products, Cones and Hyperspaces
413(24)
Hyperspaces Which Are Products
413(11)
Wrinkles
414(1)
Folds
415(6)
Proof of the Main Theorem
421(2)
Exercises
423(1)
More on Hyperspaces and Cones
424(13)
Exercises
431(3)
References
434(3)
Questions
437(60)
Unsolved and Partially Solved Questions of [ 56]
437(26)
Solved Questions of [ 56]
463(7)
More Questions
470(27)
General Spaces
470(1)
Geometric Models
471(1)
Z-Sets
471(1)
Symmetric Products
471(1)
Size Maps
472(1)
The Space of Whitney Levels for 2x
473(1)
Aposyndesis
473(1)
Universal Maps
473(1)
References
474(4)
Literature Related to Hyperspaces of Continua Since 1978
478(19)
Special Symbols 497(2)
Index 499
Alejandro lllanes, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Mexico.Sam B. Nadler, Jr. , West Virginia University Morgantown, West Virginia.