Atjaunināt sīkdatņu piekrišanu

Introduction to Arakelov Theory 1988 ed. [Hardback]

  • Formāts: Hardback, 187 pages, height x width: 235x155 mm, weight: 1030 g, X, 187 p., 1 Hardback
  • Izdošanas datums: 09-Nov-1988
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387967931
  • ISBN-13: 9780387967936
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 100,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 118,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 187 pages, height x width: 235x155 mm, weight: 1030 g, X, 187 p., 1 Hardback
  • Izdošanas datums: 09-Nov-1988
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387967931
  • ISBN-13: 9780387967936
Citas grāmatas par šo tēmu:
Nicely produced monograph by a distinguished mathematician provides mature readers with organized review of a fairly esoteric topic of fairly recent origin. Six chapters, plus a relatively more advanced appendix (Diophantine Inequalities and Arakelov Theory) by Paul Vojta, brief bibliography, no exercises. Readers are presumed to understand the motivating objectives of the work. (NW) Annotation copyright Book News, Inc. Portland, Or.

Arakelov introduced a component at infinity in arithmetic considerations, thus giving rise to global theorems similar to those of the theory of surfaces, but in an arithmetic context over the ring of integers of a number field. The book gives an introduction to this theory, including the analogues of the Hodge Index Theorem, the Arakelov adjunction formula, and the Faltings Riemann-Roch theorem. The book is intended for second year graduate students and researchers in the field who want a systematic introduction to the subject. The residue theorem, which forms the basis for the adjunction formula, is proved by a direct method due to Kunz and Waldi. The Faltings Riemann-Roch theorem is proved without assumptions of semistability. An effort has been made to include all necessary details, and as complete references as possible, especially to needed facts of analysis for Green's functions and the Faltings metrics.

Papildus informācija

Springer Book Archives
I Metrics and Chern Forms.- §1. Néron Functions and Divisors.- §2.
Metrics on Line Sheaves.- §3. The Chern Form of a Metric.- §4. Chern Forms in
the Case of Riemann Surfaces.- II Greens Functions on Rlemann Surface.- §1.
Greens Functions.- §2. The Canonical Greens Function.- §3. Some Formulas
About the Greens Function.- §4. Colemans Proof for the Existence of Greens
Function.- §5. The Greens Function on Elliptic Curves.- III Intersection on
an Arithmetic Surface.- §1. The Chow Groups.- §2. Intersections.- §3. Fibral
Intersections.- §4. Morphisms and Base Change.- §5. Néron Symbols.- IV Hodge
Index Theorem and the Adjunction Formula.- §1. Arakelov Divisors and
Intersections.- §2. The Hodge Index Theorem.- §3. Metrized Line Sheaves and
Intersections.- §4. The Canonical Sheaf and the Residue Theorem.- §5.
Metrizations and Arakelovs Adjunction Formula.- V The Faltings Reimann-Roch
Theorem.- §1. Riemann-Roch on an Arithmetic Curve.- §2. Volume Exact
Sequences.- §3. Faltings Riemann-Roch.- §4. An Application of Riemann-Roch.-
§5. Semistability.- §6. Positivity of the Canonical Sheaf.- VI Faltings
Volumes on Cohomology.- §1. Determinants.- §2. Determinant of Cohomology.-
§3. Existence of the Faltings Volumes.- §4. Estimates for the Faltings
Volumes.- §5. A Lower Bound for Greens Functions.- Appendix by Paul Vojta
Diophantine Inequalities and Arakelov Theory.- §1. General Introductory
Notions.- §2. Theorems over Function Fields.- §3. Conjectures over Number
Fields.- §4. Another Height Inequality.- §5. Applications.- References.-
Frequently Used Symbols.