Atjaunināt sīkdatņu piekrišanu

Lectures on Quantum Mechanics: With Problems, Exercises and their Solutions 2nd ed. 2016 [Hardback]

  • Formāts: Hardback, 501 pages, height x width: 235x155 mm, weight: 8985 g, 10 Tables, color; 122 Illustrations, color; XVI, 501 p. 122 illus. in color., 1 Hardback
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319434780
  • ISBN-13: 9783319434780
Citas grāmatas par šo tēmu:
  • Formāts: Hardback, 501 pages, height x width: 235x155 mm, weight: 8985 g, 10 Tables, color; 122 Illustrations, color; XVI, 501 p. 122 illus. in color., 1 Hardback
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319434780
  • ISBN-13: 9783319434780
Citas grāmatas par šo tēmu:

Beautifully illustrated and engagingly written, Twelve Lectures in Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant’s style is clear and stimulating, in the manner of a brisk lecture that can be followed with ease and enjoyment. Here is a sample of the book’s style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be ‘E = mc2’…. There is no way around it: all physics is quantum, from elementary particles, to stellar physics and the Big Bang, not to mention semiconductors and solar cells."



Beautifully illustrated and engagingly written, Twelve Lectures in Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes.

1 The Appeal of Physics
1(14)
1.1 The Interplay of the Eye and the Mind
1(3)
1.2 Advanced Technologies
4(2)
1.3 The Pillars of Contemporary Physics
6(3)
1.3.1 Mysteries of Light
6(2)
1.3.2 Fundamental Structure of Matter
8(1)
1.4 The Infinitely Complex
9(3)
1.5 The Universe
12(1)
1.6 Physical Constants
12(3)
2 A Quantum Phenomenon
15(20)
2.1 Wave Behavior of Particles
18(4)
2.1.1 Interferences
18(1)
2.1.2 Wave Behavior of Matter
19(2)
2.1.3 Analysis of the Phenomenon
21(1)
2.2 Probabilistic Nature of Quantum Phenomena
22(1)
2.2.1 Random Behavior of Particles
22(1)
2.2.2 A Nonclassical Probabilistic Phenomenon
22(1)
2.3 Conclusions
23(4)
2.4 Appendix: Notions on Probabilities
27(6)
2.5 Exercises
33(2)
3 Wave Function, Schrodinger Equation
35(28)
3.1 Terminology and Methodology
35(2)
3.2 Principles of Wave Mechanics
37(3)
3.2.1 The Wave Function
37(1)
3.2.2 Schrodinger Equation
38(2)
3.3 Superposition Principle
40(1)
3.4 Wave Packets
41(3)
3.4.1 Free Wave Packets
41(1)
3.4.2 Fourier Transforms
41(2)
3.4.3 Shape of Wave Packets
43(1)
3.5 Historical Landmarks
44(1)
3.6 Momentum Probability Law
45(1)
3.6.1 Free Particle
45(1)
3.6.2 General Case
46(1)
3.7 Heisenberg Uncertainty Relations
46(4)
3.8 Controversies and Paradoxes
50(2)
3.9 Exercises
52(1)
3.10 Appendix: Dirac δ "Function", Distributions
53(5)
3.11 Appendix: Fourier Transformation
58(4)
3.11.1 Uncertainty Relation
61(1)
3.12 Exercises
62(1)
4 Physical Quantities
63(20)
4.1 Statement of the Problem
64(2)
4.1.1 Physical Quantities
64(1)
4.1.2 Position and Momentum
65(1)
4.2 Observables
66(3)
4.2.1 Position Observable
67(1)
4.2.2 Momentum Observable
67(1)
4.2.3 Correspondence Principle
68(1)
4.2.4 Historical Landmarks
69(1)
4.3 A Counterexample of Einstein and Its Consequences
69(5)
4.3.1 What Do We Know After a Measurement?
71(1)
4.3.2 Eigenstates and Eigenvalues of an Observable
72(1)
4.3.3 Wave Packet Reduction
73(1)
4.4 The Specific Role of Energy
74(4)
4.4.1 The Hamiltonian
74(1)
4.4.2 The Schrodinger Equation, Time and Energy
75(1)
4.4.3 Stationary States
76(1)
4.4.4 Motion: Interference of Stationary States
77(1)
4.5 Schrodinger's Cat
78(4)
4.6 Exercises
82(1)
5 Energy Quantization
83(36)
5.1 Methodology
83(2)
5.1.1 Bound States and Scattering States
84(1)
5.1.2 One-Dimensional Problems
85(1)
5.2 The Harmonic Oscillator
85(2)
5.3 Square Well Potentials
87(5)
5.4 Double Well, the Ammonia Molecule
92(7)
5.4.1 The Model
92(1)
5.4.2 Stationary States, the Tunnel Effect
93(2)
5.4.3 Energy Levels
95(1)
5.4.4 Wave Functions
96(1)
5.4.5 Inversion of the Molecule
97(2)
5.5 Illustrations and Applications of the Tunnel Effect
99(3)
5.6 Tunneling Microscopy, Nanotechnologies
102(2)
5.7 Exercises
104(2)
5.8 Problem. The Ramsauer Effect
106(2)
5.8.1 Solution
107(1)
5.9 Problem. Colored Centers in Ionic Cristals
108(11)
5.9.1 Solution
112(7)
6 Principles of Quantum Mechanics
119(28)
6.1 Hilbert Space
120(4)
6.2 Dirac Formalism
124(4)
6.2.1 Notations
124(2)
6.2.2 Operators
126(1)
6.2.3 Syntax Rules
127(1)
6.2.4 Projectors; Decomposition of the Identity
128(1)
6.3 Measurement Results
128(5)
6.3.1 Eigenvectors and Eigenvalues of an Observable
129(1)
6.3.2 Results of the Measurement of a Physical Quantity
130(1)
6.3.3 Probabilities
130(1)
6.3.4 The Riesz Spectral Theorem
131(2)
6.3.5 Physical Meaning of Various Representations
133(1)
6.4 Principles of Quantum Mechanics
133(3)
6.5 Heisenberg's Matrices
136(4)
6.6 The Polarization of Light, Quantum "Logic"
140(4)
6.7 Exercises
144(3)
7 Two-State Systems
147(36)
7.1 The NH3 Molecule
148(1)
7.2 "Two-State" System
148(3)
7.3 Matrix Quantum Mechanics
151(3)
7.4 NH3 in an Electric Field
154(4)
7.4.1 Uniform Constant Field
155(1)
7.4.2 Weak and Strong Field Regimes
156(1)
7.4.3 Other Two-State Systems
157(1)
7.5 Motion of Ammonia Molecule in an Inhomogeneous Field
158(2)
7.5.1 Force on the Molecule in an Inhomogeneous Field
158(2)
7.5.2 Population Inversion
160(1)
7.6 Reaction to an Oscillating Field, the Maser
160(3)
7.7 Principle and Applications of the Maser
163(6)
7.7.1 Amplifiers
164(1)
7.7.2 Oscillators
164(1)
7.7.3 Atomic Clocks and the GPS
165(1)
7.7.4 Tests of Relativity
166(3)
7.8 Exercises
169(1)
7.9 Problem: Neutrino Oscillations
170(13)
7.9.1 Mechanism of the Oscillations; Reactor Neutrinos
172(2)
7.9.2 Oscillations of Three Species; Atmospheric Neutrinos
174(2)
7.9.3 Solution
176(5)
7.9.4 Comments
181(2)
8 Algebra of Observables
183(36)
8.1 Commutation of Observables
183(3)
8.1.1 Fundamental Commutation Relation
184(1)
8.1.2 Other Commutation Relations
184(1)
8.1.3 Dirac in the Summer of 1925
185(1)
8.2 Uncertainty Relations
186(1)
8.3 Evolution of Physical Quantities
187(4)
8.3.1 Evolution of an Expectation Value
187(1)
8.3.2 Particle in a Potential, Classical Limit
188(2)
8.3.3 Conservation Laws
190(1)
8.4 Algebraic Resolution of the Harmonic Oscillator
191(3)
8.5 Commuting Observables
194(5)
8.5.1 Theorem
195(1)
8.5.2 Example
196(1)
8.5.3 Tensor Structure of Quantum Mechanics
196(1)
8.5.4 Complete Set of Commuting Observables (CSCO)
197(1)
8.5.5 Completely Prepared Quantum State
198(1)
8.6 Sunday September 20, 1925
199(2)
8.7 Exercices
201(3)
8.8 Problem. Quasi-Classical States of the Harmonic Oscillator
204(4)
8.8.1 Solution
205(3)
8.9 Problem. Benzene and Cg Molecules
208(2)
8.9.1 Solution
209(1)
8.10 Problem. Conductibility of Crystals; Band Theory
210(9)
8.10.1 Solution
215(4)
9 Approximation Methods
219(10)
9.1 Perturbation Theory
219(5)
9.1.1 Definition of the Problem
219(2)
9.1.2 First Order Perturbation Theory
221(2)
9.1.3 Second Order Perturbation to the Energy Levels
223(1)
9.2 The Variational Method
224(3)
9.3 Exercises
227(2)
10 Angular Momentum
229(24)
10.1 Fundamental Commutation Relation
230(1)
10.1.1 Classical Angular Momentum
230(1)
10.1.2 Definition of an Angular Momentum Observable
230(1)
10.1.3 Results of the Quantization
231(1)
10.2 Proof of the Quantization
231(5)
10.2.1 Statement of the Problem
231(2)
10.2.2 Vectors [ j, m > and Eigenvalues j and m
233(1)
10.2.3 Operators j ± = jx ± ijy
233(2)
10.2.4 Quantization
235(1)
10.3 Orbital Angular Momenta
236(3)
10.3.1 Formulae in Spherical Coordinates
236(1)
10.3.2 Integer Values of m and e
236(1)
10.3.3 Spherical Harmonics
237(2)
10.4 Rotation Energy of a Diatomic Molecule
239(2)
10.5 Interstellar Molecules, the Origin of Life
241(4)
10.6 Angular Momentum and Magnetic Moment
245(5)
10.6.1 Classical Model
246(1)
10.6.2 Quantum Transposition
247(1)
10.6.3 Experimental Consequences
248(1)
10.6.4 Larmor Precession
249(1)
10.6.5 What About Half-Integer Values of j and m?
250(1)
10.7 Exercises
250(3)
11 The Hydrogen Atom
253(26)
11.1 Two-Body Problem; Relative Motion
254(2)
11.2 Motion in a Central Potential
256(4)
11.3 The Hydrogen Atom
260(9)
11.3.1 Atomic Units; Fine Structure Constant
261(1)
11.3.2 The Dimensionless Radial Equation
262(2)
11.3.3 Spectrum of Hydrogen
264(1)
11.3.4 Stationary States of the Hydrogen Atom
265(2)
11.3.5 Dimensions and Orders of Magnitude
267(1)
11.3.6 Historical Landmarks
268(1)
11.4 Muonic Atoms
269(3)
11.5 Exercises
272(3)
11.6 Problem. Decay of a Tritium Atom
275(4)
11.6.1 Solution
276(3)
12 Spin 1/2
279(34)
12.1 Experimental Results
279(2)
12.2 Spin 1/2 Formalism
281(2)
12.3 Complete Description of a Spin 1/2 Particle
283(2)
12.3.1 Observables
284(1)
12.4 Physical Spin Effects
285(1)
12.5 Spin Magnetic Moment
285(1)
12.6 The Stern--Gerlach Experiment
286(1)
12.7 Principle of the Experiment
287(7)
12.7.1 Semi-classical Analysis
287(1)
12.7.2 Experimental Results
288(1)
12.7.3 Explanation of the Stern--Gerlach Experiment
289(2)
12.7.4 Successive Stern--Gerlach Setups
291(2)
12.7.5 Measurement Along an Arbitrary Axis
293(1)
12.8 The Discovery of Spin
294(6)
12.8.1 The Hidden Sides of the Stern--Gerlach Experiment
294(2)
12.8.2 Einstein and Ehrenfest's Objections
296(1)
12.8.3 Anomalous Zeeman Effect
297(1)
12.8.4 Bohr's Challenge to Pauli
298(1)
12.8.5 The Spin Hypothesis
298(1)
12.8.6 The Fine Structure of Atomic Lines
299(1)
12.9 Magnetism, Magnetic Resonance
300(8)
12.9.1 Spin Effects, Larmor Precession
301(1)
12.9.2 Larmor Precession in a Fixed Magnetic Field
301(1)
12.9.3 Rabi's Calculation and Experiment
302(4)
12.9.4 Nuclear Magnetic Resonance
306(1)
12.9.5 Magnetic Moments of Elementary Particles
307(1)
12.10 Entertainment: Rotation by 2π of a Spin 1/2
308(2)
12.11 Exercises
310(3)
13 Addition of Angular Momenta
313(30)
13.1 Addition of Angular Momenta
313(9)
13.1.1 A Simple Case: The Addition of Two Spins 1/2
315(3)
13.1.2 Addition of Two Arbitrary Angular Momenta
318(4)
13.2 One-Electron Atoms, Spectroscopic Notations
322(3)
13.2.1 Fine Structure of Monovalent Atoms
323(2)
13.3 Hyperfine Structure; The 21 cm Line of Hydrogen
325(5)
13.4 Radioastronomy
330(3)
13.5 The 21-cm Line of Hydrogen
333(3)
13.6 The Intergalactic Medium; Star Wars
336(5)
13.7 Exercises
341(2)
14 Identical Particles, the Pauli Principle
343(42)
14.1 Indistinguishability of Two Identical Particles
344(2)
14.1.1 Identical Particles in Classical Physics
344(1)
14.1.2 The Quantum Problem
345(1)
14.1.3 Example of Ambiguities
345(1)
14.2 Two-Particle System; The Exchange Operator
346(3)
14.2.1 The Hilbert Space for the Two-Particle System
346(1)
14.2.2 The Exchange Operator Between Two Identical Particles
346(2)
14.2.3 Symmetry of the States
348(1)
14.3 The Pauli Principle
349(3)
14.3.1 The Case of Two Particles
349(1)
14.3.2 Independent Fermions and Exclusion Principle
350(1)
14.3.3 The Case of N Identical Particles
350(2)
14.4 Physical Consequences of the Pauli Principle
352(9)
14.4.1 Exchange Force Between Two Fermions
352(1)
14.4.2 The Ground State of N Identical Independent Particles
353(1)
14.4.3 Behavior of Fermion and Boson Systems at Low Temperatures
354(3)
14.4.4 Stimulated Emission and the Laser Effect
357(1)
14.4.5 Uncertainty Relations for a System of N Fermions
358(3)
14.5 Problem: Discovery of the Pauli Principle
361(8)
14.5.1 Solution
365(4)
14.6 Problem. Heisenberg Relations for Fermions. The Way to Macroscopic Systems
369(16)
14.6.1 Uncertainty Relations for N Fermions
369(2)
14.6.2 White Dwarfs and the Chandrasekhar Mass
371(2)
14.6.3 Neutron stars
373(2)
14.6.4 Mini-boson Stars
375(2)
14.6.5 Solution
377(8)
15 Lagrangian and Hamiltonian, Lorentz Force in Quantum Mechanics
385(18)
15.1 Lagrangian Formalism and the Least Action Principle
386(3)
15.2 Canonical Formalism of Hamilton and Jacobi
389(2)
15.3 Analytical Mechanics and Quantum Mechanics
391(2)
15.4 Classical Charged Particle in an Electromagnetic Field
393(1)
15.5 Lorentz Force in Quantum Mechanics
394(3)
15.5.1 Hamiltonian
394(1)
15.5.2 Gauge Invariance
394(2)
15.5.3 The Hydrogen Atom Without Spin in a Uniform Magnetic Field
396(1)
15.5.4 Spin 1/2 Particle in an Electromagnetic Field
397(1)
15.6 Exercises
397(2)
15.7 Problem. Landau Levels
399(4)
15.7.1 Solution
400(3)
16 The Evolution of Systems
403(30)
16.1 Time-Dependent Perturbation Theory
403(4)
16.2 Interaction of an Atom with an Electromagnetic Wave
407(6)
16.2.1 The Electric Dipole Approximation
408(1)
16.2.2 Justification of the Electric Dipole Interaction
408(1)
16.2.3 Absorption of Energy by an Atom
409(2)
16.2.4 Selection Rules
411(1)
16.2.5 Spontaneous Emission
411(2)
16.3 Decay of a System
413(7)
16.3.1 The Radioactivity of 57Fe
413(2)
16.3.2 The Fermi Golden Rule
415(1)
16.3.3 Orders of Magnitude
416(1)
16.3.4 Behavior for Long Times
417(3)
16.4 The Time-Energy Uncertainty Relation
420(3)
16.4.1 Isolated Systems and Intrinsic Interpretations
421(1)
16.4.2 Interpretation of Landau and Peierls
422(1)
16.4.3 The Einstein--Bohr Controversy
422(1)
16.5 Exercises
423(2)
16.6 Problem. Molecular Lasers
425(8)
16.6.1 Solution
427(6)
17 Entangled States. The Way of Paradoxes
433(26)
17.1 The EPR Paradox
434(1)
17.2 The Version of David Bohm
435(8)
17.2.1 Bell's Inequality
437(4)
17.2.2 Experimental Tests
441(2)
17.3 The GHZ Experiment
443(3)
17.4 Quantum Cryptography; How to Take Advantage of an Embarrassment
446(5)
17.5 The Quantum Computer
451(3)
17.6 Quantum Teleportation
454(2)
17.7 Concluding Remarks
456(3)
18 Solutions to the Exercises
459(36)
Index 495
A graduate of the Ecole Normale Superieure, Jean-Louis Basdevant is Professor and Chair of the Department of Physics at the Ecole Polytechnique, and Director of Research for the CNRS. Specializing in the theoretical physics of elementary particles, quantum field theory and astrophysics, Prof. Basdevant works in the Leprince-Ringuet Laboratory at the Ecole Polytechnique.