|
|
1 | (14) |
|
1.1 The Interplay of the Eye and the Mind |
|
|
1 | (3) |
|
1.2 Advanced Technologies |
|
|
4 | (2) |
|
1.3 The Pillars of Contemporary Physics |
|
|
6 | (3) |
|
|
6 | (2) |
|
1.3.2 Fundamental Structure of Matter |
|
|
8 | (1) |
|
1.4 The Infinitely Complex |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
12 | (3) |
|
|
15 | (20) |
|
2.1 Wave Behavior of Particles |
|
|
18 | (4) |
|
|
18 | (1) |
|
2.1.2 Wave Behavior of Matter |
|
|
19 | (2) |
|
2.1.3 Analysis of the Phenomenon |
|
|
21 | (1) |
|
2.2 Probabilistic Nature of Quantum Phenomena |
|
|
22 | (1) |
|
2.2.1 Random Behavior of Particles |
|
|
22 | (1) |
|
2.2.2 A Nonclassical Probabilistic Phenomenon |
|
|
22 | (1) |
|
|
23 | (4) |
|
2.4 Appendix: Notions on Probabilities |
|
|
27 | (6) |
|
|
33 | (2) |
|
3 Wave Function, Schrodinger Equation |
|
|
35 | (28) |
|
3.1 Terminology and Methodology |
|
|
35 | (2) |
|
3.2 Principles of Wave Mechanics |
|
|
37 | (3) |
|
|
37 | (1) |
|
3.2.2 Schrodinger Equation |
|
|
38 | (2) |
|
3.3 Superposition Principle |
|
|
40 | (1) |
|
|
41 | (3) |
|
|
41 | (1) |
|
|
41 | (2) |
|
3.4.3 Shape of Wave Packets |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.6 Momentum Probability Law |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
3.7 Heisenberg Uncertainty Relations |
|
|
46 | (4) |
|
3.8 Controversies and Paradoxes |
|
|
50 | (2) |
|
|
52 | (1) |
|
3.10 Appendix: Dirac δ "Function", Distributions |
|
|
53 | (5) |
|
3.11 Appendix: Fourier Transformation |
|
|
58 | (4) |
|
3.11.1 Uncertainty Relation |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (20) |
|
4.1 Statement of the Problem |
|
|
64 | (2) |
|
4.1.1 Physical Quantities |
|
|
64 | (1) |
|
4.1.2 Position and Momentum |
|
|
65 | (1) |
|
|
66 | (3) |
|
4.2.1 Position Observable |
|
|
67 | (1) |
|
4.2.2 Momentum Observable |
|
|
67 | (1) |
|
4.2.3 Correspondence Principle |
|
|
68 | (1) |
|
4.2.4 Historical Landmarks |
|
|
69 | (1) |
|
4.3 A Counterexample of Einstein and Its Consequences |
|
|
69 | (5) |
|
4.3.1 What Do We Know After a Measurement? |
|
|
71 | (1) |
|
4.3.2 Eigenstates and Eigenvalues of an Observable |
|
|
72 | (1) |
|
4.3.3 Wave Packet Reduction |
|
|
73 | (1) |
|
4.4 The Specific Role of Energy |
|
|
74 | (4) |
|
|
74 | (1) |
|
4.4.2 The Schrodinger Equation, Time and Energy |
|
|
75 | (1) |
|
|
76 | (1) |
|
4.4.4 Motion: Interference of Stationary States |
|
|
77 | (1) |
|
|
78 | (4) |
|
|
82 | (1) |
|
|
83 | (36) |
|
|
83 | (2) |
|
5.1.1 Bound States and Scattering States |
|
|
84 | (1) |
|
5.1.2 One-Dimensional Problems |
|
|
85 | (1) |
|
5.2 The Harmonic Oscillator |
|
|
85 | (2) |
|
5.3 Square Well Potentials |
|
|
87 | (5) |
|
5.4 Double Well, the Ammonia Molecule |
|
|
92 | (7) |
|
|
92 | (1) |
|
5.4.2 Stationary States, the Tunnel Effect |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (1) |
|
5.4.5 Inversion of the Molecule |
|
|
97 | (2) |
|
5.5 Illustrations and Applications of the Tunnel Effect |
|
|
99 | (3) |
|
5.6 Tunneling Microscopy, Nanotechnologies |
|
|
102 | (2) |
|
|
104 | (2) |
|
5.8 Problem. The Ramsauer Effect |
|
|
106 | (2) |
|
|
107 | (1) |
|
5.9 Problem. Colored Centers in Ionic Cristals |
|
|
108 | (11) |
|
|
112 | (7) |
|
6 Principles of Quantum Mechanics |
|
|
119 | (28) |
|
|
120 | (4) |
|
|
124 | (4) |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (1) |
|
6.2.4 Projectors; Decomposition of the Identity |
|
|
128 | (1) |
|
|
128 | (5) |
|
6.3.1 Eigenvectors and Eigenvalues of an Observable |
|
|
129 | (1) |
|
6.3.2 Results of the Measurement of a Physical Quantity |
|
|
130 | (1) |
|
|
130 | (1) |
|
6.3.4 The Riesz Spectral Theorem |
|
|
131 | (2) |
|
6.3.5 Physical Meaning of Various Representations |
|
|
133 | (1) |
|
6.4 Principles of Quantum Mechanics |
|
|
133 | (3) |
|
6.5 Heisenberg's Matrices |
|
|
136 | (4) |
|
6.6 The Polarization of Light, Quantum "Logic" |
|
|
140 | (4) |
|
|
144 | (3) |
|
|
147 | (36) |
|
|
148 | (1) |
|
|
148 | (3) |
|
7.3 Matrix Quantum Mechanics |
|
|
151 | (3) |
|
7.4 NH3 in an Electric Field |
|
|
154 | (4) |
|
7.4.1 Uniform Constant Field |
|
|
155 | (1) |
|
7.4.2 Weak and Strong Field Regimes |
|
|
156 | (1) |
|
7.4.3 Other Two-State Systems |
|
|
157 | (1) |
|
7.5 Motion of Ammonia Molecule in an Inhomogeneous Field |
|
|
158 | (2) |
|
7.5.1 Force on the Molecule in an Inhomogeneous Field |
|
|
158 | (2) |
|
7.5.2 Population Inversion |
|
|
160 | (1) |
|
7.6 Reaction to an Oscillating Field, the Maser |
|
|
160 | (3) |
|
7.7 Principle and Applications of the Maser |
|
|
163 | (6) |
|
|
164 | (1) |
|
|
164 | (1) |
|
7.7.3 Atomic Clocks and the GPS |
|
|
165 | (1) |
|
7.7.4 Tests of Relativity |
|
|
166 | (3) |
|
|
169 | (1) |
|
7.9 Problem: Neutrino Oscillations |
|
|
170 | (13) |
|
7.9.1 Mechanism of the Oscillations; Reactor Neutrinos |
|
|
172 | (2) |
|
7.9.2 Oscillations of Three Species; Atmospheric Neutrinos |
|
|
174 | (2) |
|
|
176 | (5) |
|
|
181 | (2) |
|
|
183 | (36) |
|
8.1 Commutation of Observables |
|
|
183 | (3) |
|
8.1.1 Fundamental Commutation Relation |
|
|
184 | (1) |
|
8.1.2 Other Commutation Relations |
|
|
184 | (1) |
|
8.1.3 Dirac in the Summer of 1925 |
|
|
185 | (1) |
|
8.2 Uncertainty Relations |
|
|
186 | (1) |
|
8.3 Evolution of Physical Quantities |
|
|
187 | (4) |
|
8.3.1 Evolution of an Expectation Value |
|
|
187 | (1) |
|
8.3.2 Particle in a Potential, Classical Limit |
|
|
188 | (2) |
|
|
190 | (1) |
|
8.4 Algebraic Resolution of the Harmonic Oscillator |
|
|
191 | (3) |
|
8.5 Commuting Observables |
|
|
194 | (5) |
|
|
195 | (1) |
|
|
196 | (1) |
|
8.5.3 Tensor Structure of Quantum Mechanics |
|
|
196 | (1) |
|
8.5.4 Complete Set of Commuting Observables (CSCO) |
|
|
197 | (1) |
|
8.5.5 Completely Prepared Quantum State |
|
|
198 | (1) |
|
8.6 Sunday September 20, 1925 |
|
|
199 | (2) |
|
|
201 | (3) |
|
8.8 Problem. Quasi-Classical States of the Harmonic Oscillator |
|
|
204 | (4) |
|
|
205 | (3) |
|
8.9 Problem. Benzene and Cg Molecules |
|
|
208 | (2) |
|
|
209 | (1) |
|
8.10 Problem. Conductibility of Crystals; Band Theory |
|
|
210 | (9) |
|
|
215 | (4) |
|
|
219 | (10) |
|
|
219 | (5) |
|
9.1.1 Definition of the Problem |
|
|
219 | (2) |
|
9.1.2 First Order Perturbation Theory |
|
|
221 | (2) |
|
9.1.3 Second Order Perturbation to the Energy Levels |
|
|
223 | (1) |
|
9.2 The Variational Method |
|
|
224 | (3) |
|
|
227 | (2) |
|
|
229 | (24) |
|
10.1 Fundamental Commutation Relation |
|
|
230 | (1) |
|
10.1.1 Classical Angular Momentum |
|
|
230 | (1) |
|
10.1.2 Definition of an Angular Momentum Observable |
|
|
230 | (1) |
|
10.1.3 Results of the Quantization |
|
|
231 | (1) |
|
10.2 Proof of the Quantization |
|
|
231 | (5) |
|
10.2.1 Statement of the Problem |
|
|
231 | (2) |
|
10.2.2 Vectors [ j, m > and Eigenvalues j and m |
|
|
233 | (1) |
|
10.2.3 Operators j ± = jx ± ijy |
|
|
233 | (2) |
|
|
235 | (1) |
|
10.3 Orbital Angular Momenta |
|
|
236 | (3) |
|
10.3.1 Formulae in Spherical Coordinates |
|
|
236 | (1) |
|
10.3.2 Integer Values of m and e |
|
|
236 | (1) |
|
10.3.3 Spherical Harmonics |
|
|
237 | (2) |
|
10.4 Rotation Energy of a Diatomic Molecule |
|
|
239 | (2) |
|
10.5 Interstellar Molecules, the Origin of Life |
|
|
241 | (4) |
|
10.6 Angular Momentum and Magnetic Moment |
|
|
245 | (5) |
|
|
246 | (1) |
|
10.6.2 Quantum Transposition |
|
|
247 | (1) |
|
10.6.3 Experimental Consequences |
|
|
248 | (1) |
|
|
249 | (1) |
|
10.6.5 What About Half-Integer Values of j and m? |
|
|
250 | (1) |
|
|
250 | (3) |
|
|
253 | (26) |
|
11.1 Two-Body Problem; Relative Motion |
|
|
254 | (2) |
|
11.2 Motion in a Central Potential |
|
|
256 | (4) |
|
|
260 | (9) |
|
11.3.1 Atomic Units; Fine Structure Constant |
|
|
261 | (1) |
|
11.3.2 The Dimensionless Radial Equation |
|
|
262 | (2) |
|
11.3.3 Spectrum of Hydrogen |
|
|
264 | (1) |
|
11.3.4 Stationary States of the Hydrogen Atom |
|
|
265 | (2) |
|
11.3.5 Dimensions and Orders of Magnitude |
|
|
267 | (1) |
|
11.3.6 Historical Landmarks |
|
|
268 | (1) |
|
|
269 | (3) |
|
|
272 | (3) |
|
11.6 Problem. Decay of a Tritium Atom |
|
|
275 | (4) |
|
|
276 | (3) |
|
|
279 | (34) |
|
12.1 Experimental Results |
|
|
279 | (2) |
|
|
281 | (2) |
|
12.3 Complete Description of a Spin 1/2 Particle |
|
|
283 | (2) |
|
|
284 | (1) |
|
12.4 Physical Spin Effects |
|
|
285 | (1) |
|
12.5 Spin Magnetic Moment |
|
|
285 | (1) |
|
12.6 The Stern--Gerlach Experiment |
|
|
286 | (1) |
|
12.7 Principle of the Experiment |
|
|
287 | (7) |
|
12.7.1 Semi-classical Analysis |
|
|
287 | (1) |
|
12.7.2 Experimental Results |
|
|
288 | (1) |
|
12.7.3 Explanation of the Stern--Gerlach Experiment |
|
|
289 | (2) |
|
12.7.4 Successive Stern--Gerlach Setups |
|
|
291 | (2) |
|
12.7.5 Measurement Along an Arbitrary Axis |
|
|
293 | (1) |
|
12.8 The Discovery of Spin |
|
|
294 | (6) |
|
12.8.1 The Hidden Sides of the Stern--Gerlach Experiment |
|
|
294 | (2) |
|
12.8.2 Einstein and Ehrenfest's Objections |
|
|
296 | (1) |
|
12.8.3 Anomalous Zeeman Effect |
|
|
297 | (1) |
|
12.8.4 Bohr's Challenge to Pauli |
|
|
298 | (1) |
|
12.8.5 The Spin Hypothesis |
|
|
298 | (1) |
|
12.8.6 The Fine Structure of Atomic Lines |
|
|
299 | (1) |
|
12.9 Magnetism, Magnetic Resonance |
|
|
300 | (8) |
|
12.9.1 Spin Effects, Larmor Precession |
|
|
301 | (1) |
|
12.9.2 Larmor Precession in a Fixed Magnetic Field |
|
|
301 | (1) |
|
12.9.3 Rabi's Calculation and Experiment |
|
|
302 | (4) |
|
12.9.4 Nuclear Magnetic Resonance |
|
|
306 | (1) |
|
12.9.5 Magnetic Moments of Elementary Particles |
|
|
307 | (1) |
|
12.10 Entertainment: Rotation by 2π of a Spin 1/2 |
|
|
308 | (2) |
|
|
310 | (3) |
|
13 Addition of Angular Momenta |
|
|
313 | (30) |
|
13.1 Addition of Angular Momenta |
|
|
313 | (9) |
|
13.1.1 A Simple Case: The Addition of Two Spins 1/2 |
|
|
315 | (3) |
|
13.1.2 Addition of Two Arbitrary Angular Momenta |
|
|
318 | (4) |
|
13.2 One-Electron Atoms, Spectroscopic Notations |
|
|
322 | (3) |
|
13.2.1 Fine Structure of Monovalent Atoms |
|
|
323 | (2) |
|
13.3 Hyperfine Structure; The 21 cm Line of Hydrogen |
|
|
325 | (5) |
|
|
330 | (3) |
|
13.5 The 21-cm Line of Hydrogen |
|
|
333 | (3) |
|
13.6 The Intergalactic Medium; Star Wars |
|
|
336 | (5) |
|
|
341 | (2) |
|
14 Identical Particles, the Pauli Principle |
|
|
343 | (42) |
|
14.1 Indistinguishability of Two Identical Particles |
|
|
344 | (2) |
|
14.1.1 Identical Particles in Classical Physics |
|
|
344 | (1) |
|
14.1.2 The Quantum Problem |
|
|
345 | (1) |
|
14.1.3 Example of Ambiguities |
|
|
345 | (1) |
|
14.2 Two-Particle System; The Exchange Operator |
|
|
346 | (3) |
|
14.2.1 The Hilbert Space for the Two-Particle System |
|
|
346 | (1) |
|
14.2.2 The Exchange Operator Between Two Identical Particles |
|
|
346 | (2) |
|
14.2.3 Symmetry of the States |
|
|
348 | (1) |
|
|
349 | (3) |
|
14.3.1 The Case of Two Particles |
|
|
349 | (1) |
|
14.3.2 Independent Fermions and Exclusion Principle |
|
|
350 | (1) |
|
14.3.3 The Case of N Identical Particles |
|
|
350 | (2) |
|
14.4 Physical Consequences of the Pauli Principle |
|
|
352 | (9) |
|
14.4.1 Exchange Force Between Two Fermions |
|
|
352 | (1) |
|
14.4.2 The Ground State of N Identical Independent Particles |
|
|
353 | (1) |
|
14.4.3 Behavior of Fermion and Boson Systems at Low Temperatures |
|
|
354 | (3) |
|
14.4.4 Stimulated Emission and the Laser Effect |
|
|
357 | (1) |
|
14.4.5 Uncertainty Relations for a System of N Fermions |
|
|
358 | (3) |
|
14.5 Problem: Discovery of the Pauli Principle |
|
|
361 | (8) |
|
|
365 | (4) |
|
14.6 Problem. Heisenberg Relations for Fermions. The Way to Macroscopic Systems |
|
|
369 | (16) |
|
14.6.1 Uncertainty Relations for N Fermions |
|
|
369 | (2) |
|
14.6.2 White Dwarfs and the Chandrasekhar Mass |
|
|
371 | (2) |
|
|
373 | (2) |
|
|
375 | (2) |
|
|
377 | (8) |
|
15 Lagrangian and Hamiltonian, Lorentz Force in Quantum Mechanics |
|
|
385 | (18) |
|
15.1 Lagrangian Formalism and the Least Action Principle |
|
|
386 | (3) |
|
15.2 Canonical Formalism of Hamilton and Jacobi |
|
|
389 | (2) |
|
15.3 Analytical Mechanics and Quantum Mechanics |
|
|
391 | (2) |
|
15.4 Classical Charged Particle in an Electromagnetic Field |
|
|
393 | (1) |
|
15.5 Lorentz Force in Quantum Mechanics |
|
|
394 | (3) |
|
|
394 | (1) |
|
|
394 | (2) |
|
15.5.3 The Hydrogen Atom Without Spin in a Uniform Magnetic Field |
|
|
396 | (1) |
|
15.5.4 Spin 1/2 Particle in an Electromagnetic Field |
|
|
397 | (1) |
|
|
397 | (2) |
|
15.7 Problem. Landau Levels |
|
|
399 | (4) |
|
|
400 | (3) |
|
16 The Evolution of Systems |
|
|
403 | (30) |
|
16.1 Time-Dependent Perturbation Theory |
|
|
403 | (4) |
|
16.2 Interaction of an Atom with an Electromagnetic Wave |
|
|
407 | (6) |
|
16.2.1 The Electric Dipole Approximation |
|
|
408 | (1) |
|
16.2.2 Justification of the Electric Dipole Interaction |
|
|
408 | (1) |
|
16.2.3 Absorption of Energy by an Atom |
|
|
409 | (2) |
|
|
411 | (1) |
|
16.2.5 Spontaneous Emission |
|
|
411 | (2) |
|
|
413 | (7) |
|
16.3.1 The Radioactivity of 57Fe |
|
|
413 | (2) |
|
16.3.2 The Fermi Golden Rule |
|
|
415 | (1) |
|
16.3.3 Orders of Magnitude |
|
|
416 | (1) |
|
16.3.4 Behavior for Long Times |
|
|
417 | (3) |
|
16.4 The Time-Energy Uncertainty Relation |
|
|
420 | (3) |
|
16.4.1 Isolated Systems and Intrinsic Interpretations |
|
|
421 | (1) |
|
16.4.2 Interpretation of Landau and Peierls |
|
|
422 | (1) |
|
16.4.3 The Einstein--Bohr Controversy |
|
|
422 | (1) |
|
|
423 | (2) |
|
16.6 Problem. Molecular Lasers |
|
|
425 | (8) |
|
|
427 | (6) |
|
17 Entangled States. The Way of Paradoxes |
|
|
433 | (26) |
|
|
434 | (1) |
|
17.2 The Version of David Bohm |
|
|
435 | (8) |
|
|
437 | (4) |
|
17.2.2 Experimental Tests |
|
|
441 | (2) |
|
|
443 | (3) |
|
17.4 Quantum Cryptography; How to Take Advantage of an Embarrassment |
|
|
446 | (5) |
|
17.5 The Quantum Computer |
|
|
451 | (3) |
|
17.6 Quantum Teleportation |
|
|
454 | (2) |
|
|
456 | (3) |
|
18 Solutions to the Exercises |
|
|
459 | (36) |
Index |
|
495 | |