Atjaunināt sīkdatņu piekrišanu

E-grāmata: LTE for UMTS - Evolution to LTE-Advanced 2e: Evolution to LTE-Advanced 2nd Edition [Wiley Online]

(Nokia Siemens Networks), (Nokia Siemens Networks)
  • Formāts: 576 pages
  • Izdošanas datums: 11-Mar-2011
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111999294X
  • ISBN-13: 9781119992943
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 130,36 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 576 pages
  • Izdošanas datums: 11-Mar-2011
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111999294X
  • ISBN-13: 9781119992943
Citas grāmatas par šo tēmu:
Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9. This new edition also provides an outlook to Release 10, including the overview of Release 10 LTE-Advanced technology components which enable reaching data rates beyond 1 Gbps. Key updates for the second edition of LTE for UMTS are focused on the new topics from Release 9 & 10, and include:





LTE-Advanced; Self optimized networks (SON); Transport network dimensioning; Measurement results.
Preface xvii
Acknowledgements xix
List of Abbreviations
xxi
1 Introduction
1(12)
Harry Holma
Antti Toskala
1.1 Mobile Voice Subscriber Growth
1(1)
1.2 Mobile Data Usage Growth
1(2)
1.3 Evolution of Wireline Technologies
3(1)
1.4 Motivation and Targets for LTE
4(1)
1.5 Overview of LTE
5(1)
1.6 3GPP Family of Technologies
6(2)
1.7 Wireless Spectrum
8(1)
1.8 New Spectrum Identified by WRC-07
9(1)
1.9 LTE-Advanced
10(3)
2 LTE Standardization
13(10)
Antti Toskala
2.1 Introduction
13(1)
2.2 Overview of 3GPP Releases and Process
13(2)
2.3 LTE Targets
15(1)
2.4 LTE Standardization Phases
16(2)
2.5 Evolution Beyond Release 8
18(2)
2.6 LTE-Advanced for IMT-Advanced
20(1)
2.7 LTE Specifications and 3GPP Structure
20(3)
References
21(2)
3 System Architecture Based on 3GPP SAE
23(44)
Atte Lansisalmi
Antti Toskala
3.1 System Architecture Evolution in 3GPP
23(2)
3.2 Basic System Architecture Configuration with only E-UTRAN Access Network
25(16)
3.2.1 Overview of Basic System Architecture Configuration
25(1)
3.2.2 Logical Elements in Basic System Architecture Configuration
26(9)
3.2.3 Self-configuration of S1-MME and X2 Interfaces
35(1)
3.2.4 Interfaces and Protocols in Basic System Architecture Configuration
36(4)
3.2.5 Roaming in Basic System Architecture Configuration
40(1)
3.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks
41(5)
3.3.1 Overview of 3GPP Inter-working System Architecture Configuration
41(1)
3.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration
42(2)
3.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration
44(1)
3.3.4 Inter-working with Legacy 3GPP CS Infrastructure
45(1)
3.4 System Architecture with E-UTRAN and Non-3GPP Access Networks
46(6)
3.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration
46(2)
3.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration
48(3)
3.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration
51(1)
3.5 Inter-working with cdma2000® Access Networks
52(4)
3.5.1 Architecture for cdma2000® HRPD Inter-working
52(2)
3.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working
54(1)
3.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working
55(1)
3.5.4 Inter-working with cdma2000® 1xRTT
56(1)
3.6 IMS Architecture
56(4)
3.6.1 Overview
56(2)
3.6.2 Session Management and Routing
58(1)
3.6.3 Databases
59(1)
3.6.4 Services Elements
59(1)
3.6.5 Inter-working Elements
59(1)
3.7 PCC and QoS
60(7)
3.7.1 PCC
60(2)
3.7.2 QoS
62(3)
References
65(2)
4 Introduction to OFDMA and SC-FDMA and to MIMO in LTE
67(16)
Antti Toskala
Timo Lunttila
4.1 Introduction
67(1)
4.2 LTE Multiple Access Background
67(3)
4.3 OFDMA Basics
70(6)
4.4 SC-FDMA Basics
76(4)
4.5 MIMO Basics
80(2)
4.6 Summary
82(1)
References
82(1)
5 Physical Layer
83(58)
Antti Toskala
Timo Lunttila
Esa Tiirola
Kari Hooli
Mieszko Chmiel
Juha Korhonen
5.1 Introduction
83(1)
5.2 Transport Channels and their Mapping to the Physical Channels
83(2)
5.3 Modulation
85(1)
5.4 Uplink User Data Transmission
86(4)
5.5 Downlink User Data Transmission
90(3)
5.6 Uplink Physical Layer Signaling Transmission
93(16)
5.6.1 Physical Uplink Control Channel, PUCCH
94(4)
5.6.2 PUCCH Configuration
98(4)
5.6.3 Control Signaling on PUSCH
102(2)
5.6.4 Uplink Reference Signals
104(5)
5.7 PRACH Structure
109(3)
5.7.1 Physical Random Access Channel
109(1)
5.7.2 Preamble Sequence
110(2)
5.8 Downlink Physical Layer Signaling Transmission
112(8)
5.8.1 Physical Control Format Indicator Channel (PCFICH)
112(1)
5.8.2 Physical Downlink Control Channel (PDCCH)
113(2)
5.8.3 Physical HARQ Indicator Channel (PHICH)
115(1)
5.8.4 Cell-specific Reference Signal
116(1)
5.8.5 Downlink Transmission Modes
117(2)
5.8.6 Physical Broadcast Channel (PBCH)
119(1)
5.8.7 Synchronization Signal
120(1)
5.9 Physical Layer Procedures
120(15)
5.9.1 HARQ Procedure
121(1)
5.9.2 Timing Advance
122(1)
5.9.3 Power Control
123(1)
5.9.4 Paging
124(1)
5.9.5 Random Access Procedure
124(3)
5.9.6 Channel Feedback Reporting Procedure
127(5)
5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology
132(2)
5.9.8 Cell Search Procedure
134(1)
5.9.9 Half-duplex Operation
134(1)
5.10 UE Capability Classes and Supported Features
135(1)
5.11 Physical Layer Measurements
136(1)
5.11.1 eNodeB Measurements
136(1)
5.11.2 UE Measurements and Measurement Procedure
137(1)
5.12 Physical Layer Parameter Configuration
137(1)
5.13 Summary
138(3)
References
139(2)
6 LTE Radio Protocols
141(44)
Antti Toskala
Woonhee Hwang
Colin Willcock
6.1 Introduction
141(1)
6.2 Protocol Architecture
141(3)
6.3 The Medium Access Control
144(3)
6.3.1 Logical Channels
145(1)
6.3.2 Data Flow in MAC Layer
146(1)
6.4 The Radio Link Control Layer
147(3)
6.4.1 RLC Modes of Operation
148(1)
6.4.2 Data Flow in the RLC Layer
148(2)
6.5 Packet Data Convergence Protocol
150(1)
6.6 Radio Resource Control (RRC)
151(18)
6.6.1 UE States and State Transitions Including Inter-RAT
151(1)
6.6.2 RRC Functions and Signaling Procedures
152(15)
6.6.3 Self Optimization - Minimization of Drive Tests
167(2)
6.7 X2 Interface Protocols
169(3)
6.7.1 Handover on X2 Interface
169(2)
6.7.2 Load Management
171(1)
6.8 Understanding the RRC ASN.1 Protocol Definition
172(10)
6.8.1 ASN.1 Introduction
172(1)
6.8.2 RRC Protocol Definition
173(9)
6.9 Early UE Handling in LTE
182(1)
6.10 Summary
183(2)
References
183(2)
7 Mobility
185(18)
Chris Callender
Harri Holma
Jarkko Koskela
Jussi Reunanen
7.1 Introduction
185(1)
7.2 Mobility Management in Idle State
186(4)
7.2.1 Overview of Idle Mode Mobility
186(1)
7.2.2 Cell Selection and Reselection Process
187(2)
7.2.3 Tracking Area Optimization
189(1)
7.3 Intra-LTE Handovers
190(8)
7.3.1 Procedure
190(2)
7.3.2 Signaling
192(3)
7.3.3 Handover Measurements
195(1)
7.3.4 Automatic Neighbor Relations
195(1)
7.3.5 Handover Frequency
196(1)
7.3.6 Handover Delay
197(1)
7.4 Inter-system Handovers
198(1)
7.5 Differences in E-UTRAN and UTRAN Mobility
199(2)
7.6 Summary
201(2)
References
201(2)
8 Radio Resource Management
203(34)
Harri Holma
Troels Kolding
Daniela Laselva
Klaus Pedersen
Claudio Rosa
Ingo Viering
8.1 Introduction
203(1)
8.2 Overview of RRM Algorithms
203(1)
8.3 Admission Control and QoS Parameters
204(2)
8.4 Downlink Dynamic Scheduling and Link Adaptation
206(10)
8.4.1 Layer 2 Scheduling and Link Adaptation Framework
206(1)
8.4.2 Frequency Domain Packet Scheduling
206(3)
8.4.3 Combined Time and Frequency Domain Scheduling Algorithms
209(2)
8.4.4 Packet Scheduling with MIMO
211(1)
8.4.5 Downlink Packet Scheduling Illustrations
211(5)
8.5 Uplink Dynamic Scheduling and Link Adaptation
216(11)
8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling
219(4)
8.5.2 Uplink Link Adaptation
223(1)
8.5.3 Uplink Packet Scheduling
223(4)
8.6 Interference Management and Power Settings
227(3)
8.6.1 Downlink Transmit Power Settings
227(1)
8.6.2 Uplink Interference Coordination
228(2)
8.7 Discontinuous Transmission and Reception (DTX/DRX)
230(3)
8.8 RRC Connection Maintenance
233(1)
8.9 Summary
233(4)
References
234(3)
9 Self Organizing Networks (SON)
237(20)
Krzysztof Kordybach
Seppo Hamalainen
Cinzia Sartori
Ingo Viering
9.1 Introduction
237(1)
9.2 SON Architecture
238(3)
9.3 SON Functions
241(1)
9.4 Self-Configuration
241(3)
9.4.1 Configuration of Physical Cell ID
242(1)
9.4.2 Automatic Neighbor Relations (ANR)
243(1)
9.5 Self-Optimization and Self-Healing Use Cases
244(9)
9.5.1 Mobility Load Balancing (MLB)
245(3)
9.5.2 Mobility Robustness Optimization (MRO)
248(3)
9.5.3 RACH Optimization
251(1)
9.5.4 Energy Saving
251(1)
9.5.5 Summary of the Available SON Procedures
252(1)
9.5.6 SON Management
252(1)
9.6 3GPP Release 10 Use Cases
253(1)
9.7 Summary
254(3)
References
255(2)
10 Performance
257(46)
Harri Holma
Pasi Kinnunen
Istvan Z. Kovacs
Kari Pajukoski
Klaus Pedersen
Jussi Reunanen
10.1 Introduction
257(1)
10.2 Layer 1 Peak Bit Rates
257(3)
10.3 Terminal Categories
260(1)
10.4 Link Level Performance
261(4)
10.4.1 Downlink Link Performance
261(1)
10.4.2 Uplink Link Performance
262(3)
10.5 Link Budgets
265(5)
10.6 Spectral Efficiency
270(18)
10.6.1 System Deployment Scenarios
270(3)
10.6.2 Downlink System Performance
273(2)
10.6.3 Uplink System Performance
275(1)
10.6.4 Multi-antenna MIMO Evolution Beyond 2 x 2
276(7)
10.6.5 Higher Order Sectorization (Six Sectors)
283(2)
10.6.6 Spectral Efficiency as a Function of LTE Bandwidth
285(1)
10.6.7 Spectral Efficiency Evaluation in 3GPP
286(1)
10.6.8 Benchmarking LTE to HSPA
287(1)
10.7 Latency
288(2)
10.7.1 User Plane Latency
288(2)
10.8 LTE Refarming to GSM Spectrum
290(1)
10.9 Dimensioning
291(2)
10.10 Capacity Management Examples from HSPA Networks
293(6)
10.10.1 Data Volume Analysis
293(4)
10.10.2 Cell Performance Analysis
297(2)
10.11 Summary
299(4)
References
301(2)
11 LTE Measurements
303(22)
Marilynn P. Wylie-Green
Harri Holma
Jussi Reunanen
Antti Toskala
11.1 Introduction
303(1)
11.2 Theoretical Peak Data Rates
303(2)
11.3 Laboratory Measurements
305(1)
11.4 Field Measurement Setups
306(1)
11.5 Artificial Load Generation
307(3)
11.6 Peak Data Rates in the Field
310(1)
11.7 Link Adaptation and MIMO Utilization
311(2)
11.8 Handover Performance
313(2)
11.9 Data Rates in Drive Tests
315(2)
11.10 Multi-user Packet Scheduling
317(3)
11.11 Latency
320(1)
11.12 Very Large Cell Size
321(2)
11.13 Summary
323(2)
References
323(2)
12 Transport
325(26)
Torsten Musiol
12.1 Introduction
325(1)
12.2 Protocol Stacks and Interfaces
325(9)
12.2.1 Functional Planes
325(2)
12.2.2 Network Layer (L3) - IP
327(1)
12.2.3 Data Link Layer (L2) - Ethernet
328(1)
12.2.4 Physical Layer (L1) - Ethernet Over Any Media
329(1)
12.2.5 Maximum Transmission Unit Size Issues
330(2)
12.2.6 Traffic Separation and IP Addressing
332(2)
12.3 Transport Aspects of Intra-LTE Handover
334(1)
12.4 Transport Performance Requirements
335(5)
12.4.1 Throughput (Capacity)
335(3)
12.4.2 Delay (Latency), Delay Variation (Jitter)
338(1)
12.4.3 TCP Issues
339(1)
12.5 Transport Network Architecture for LTE
340(2)
12.5.1 Implementation Examples
340(1)
12.5.2 X2 Connectivity Requirements
341(1)
12.5.3 Transport Service Attributes
342(1)
12.6 Quality of Service
342(2)
12.6.1 End-to-End QoS
342(1)
12.6.2 Transport QoS
343(1)
12.7 Transport Security
344(3)
12.8 Synchronization from Transport Network
347(1)
12.8.1 Precision Time Protocol
347(1)
12.8.2 Synchronous Ethernet
348(1)
12.9 Base Station Co-location
348(1)
12.10 Summary
349(2)
References
349(2)
13 Voice over IP (VoIP)
351(24)
Harri Holma
Juha Kallio
Markku Kuusela
Petteri Lunden
Esa Malkamaki
Jussi Ojala
Haiming Wang
13.1 Introduction
351(1)
13.2 VoIP Codecs
351(2)
13.3 VoIP Requirements
353(1)
13.4 Delay Budget
354(1)
13.5 Scheduling and Control Channels
354(3)
13.6 LTE Voice Capacity
357(7)
13.7 Voice Capacity Evolution
364(1)
13.8 Uplink Coverage
365(3)
13.9 Circuit Switched Fallback for LTE
368(2)
13.10 Single Radio Voice Call Continuity (SR-VCC)
370(2)
13.11 Summary
372(3)
References
373(2)
14 Performance Requirements
375(80)
Andrea Ancora
Iwajlo Angelow
Dominique Brunel
Chris Callender
Harri Holma
Peter Muszynski
Earl McCune
Laurent Noel
14.1 Introduction
375(1)
14.2 Frequency Bands and Channel Arrangements
375(5)
14.2.1 Frequency Bands
375(3)
14.2.2 Channel Bandwidth
378(1)
14.2.3 Channel Arrangements
379(1)
14.3 eNodeB RF Transmitter
380(12)
14.3.1 Operating Band Unwanted Emissions
381(2)
14.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band
383(2)
14.3.3 Co-existence with Other Systems in Adjacent Operating Bands
385(4)
14.3.4 Transmitted Signal Quality
389(3)
14.4 eNodeB RF Receiver
392(6)
14.5 eNodeB Demodulation Performance
398(5)
14.6 User Equipment Design Principles and Challenges
403(15)
14.6.1 Introduction
403(1)
14.6.2 RF Subsystem Design Challenges
403(7)
14.6.3 RF-baseband Interface Design Challenges
410(4)
14.6.4 LTE Versus HSDPA Baseband Design Complexity
414(4)
14.7 UE RF Transmitter
418(3)
14.7.1 LTE UE Transmitter Requirement
418(1)
14.7.2 LTE Transmit Modulation Accuracy, EVM
418(1)
14.7.3 Desensitization for Band and Bandwidth Combinations (De-sense)
419(1)
14.7.4 Transmitter Architecture
420(1)
14.8 UE RF Receiver Requirements
421(19)
14.8.1 Reference Sensitivity Level
422(2)
14.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs
424(5)
14.8.3 ACS, Narrowband Blockers and ADC Design Challenges
429(6)
14.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers
435(5)
14.9 UE Demodulation Performance
440(6)
14.9.1 Transmission Modes
440(3)
14.9.2 Channel Modeling and Estimation
443(1)
14.9.3 Demodulation Performance
443(3)
14.10 Requirements for Radio Resource Management
446(5)
14.10.1 Idle State Mobility
447(1)
14.10.2 Connected State Mobility When DRX is not Active
447(3)
14.10.3 Connected State Mobility When DRX is Active
450(1)
14.10.4 Handover Execution Performance Requirements
450(1)
14.11 Summary
451(4)
References
452(3)
15 LTE TDD Mode
455(32)
Che Xiangguang
Troels Kolding
Peter Skov
Wang Haiming
Antti Toskala
15.1 Introduction
455(1)
15.2 LTE TDD Fundamentals
455(7)
15.2.1 The LTE TDD Frame Structure
457(2)
15.2.2 Asymmetric Uplink/Downlink Capacity Allocation
459(1)
15.2.3 Co-existence with TD-SCDMA
459(1)
15.2.4 Channel Reciprocity
460(1)
15.2.5 Multiple Access Schemes
461(1)
15.3 TDD Control Design
462(7)
15.3.1 Common Control Channels
462(2)
15.3.2 Sounding Reference Signal
464(1)
15.3.3 HARQ Process and Timing
465(1)
15.3.4 HARQ Design for UL TTI Bundling
466(1)
15.3.5 UL HARQ-ACK/NACK Transmission
467(1)
15.3.6 DL HARQ-ACK/NACK Transmission
467(1)
15.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH
468(1)
15.4 Semi-persistent Scheduling
469(2)
15.5 MIMO and Dedicated Reference Signals
471(1)
15.6 LTE TDD Performance
472(11)
15.6.1 Link Performance
473(1)
15.6.2 Link Budget and Coverage for the TDD System
473(4)
15.6.3 System Level Performance
477(6)
15.7 Evolution of LTE TDD
483(1)
15.8 LTE TDD Summary
484(3)
References
484(3)
16 LTE-Advanced
487(28)
Mieszko Chmiel
Mihai Enescu
Harri Holma
Tommi Koivisto
Jari Lindholm
Timo Lunttila
Klaus Pedersen
Peter Skov
Timo Roman
Antti Toskala
Yuyu Yan
16.1 Introduction
487(1)
16.2 LTE-Advanced and IMT-Advanced
487(1)
16.3 Requirements
488(1)
16.3.1 Backwards Compatibility
488(1)
16.4 3GPP LTE-Advanced Study Phase
489(1)
16.5 Carrier Aggregation
489(7)
16.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture
492(1)
16.5.2 Physical Layer Details of the Carrier Aggregation
493(1)
16.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation
493(1)
16.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation
494(1)
16.5.5 Carrier Aggregation and Mobility
494(1)
16.5.6 Carrier Aggregation Performance
495(1)
16.6 Downlink Multi-antenna Enhancements
496(6)
16.6.1 Reference Symbol Structure in the Downlink
496(3)
16.6.2 Codebook Design
499(2)
16.6.3 System Performance of Downlink Multi-antenna Enhancements
501(1)
16.7 Uplink Multi-antenna Techniques
502(4)
16.7.1 Uplink Multi-antenna Reference Signal Structure
503(1)
16.7.2 Uplink MIMO for PUSCH
503(1)
16.7.3 Uplink MIMO for Control Channels
504(1)
16.7.4 Uplink Multi-user MIMO
505(1)
16.7.5 System Performance of Uplink Multi-antenna Enhancements
505(1)
16.8 Heterogeneous Networks
506(2)
16.9 Relays
508(4)
16.9.1 Architecture (Design Principles of Release 10 Relays)
508(2)
16.9.2 DeNB - RN Link Design
510(1)
16.9.3 Relay Deployment
511(1)
16.10 Release 11 Outlook
512(1)
16.11 Conclusions
513(2)
References
513(2)
17 HSPA Evolution
515(22)
Harri Holma
Karri Ranta-Aho
Antti Toskala
17.1 Introduction
515(1)
17.2 Discontinuous Transmission and Reception (DTX/DRX)
515(2)
17.3 Circuit Switched Voice on HSPA
517(3)
17.4 Enhanced FACH and RACH
520(1)
17.5 Downlink MIMO and 64QAM
521(3)
17.5.1 MIMO Workaround Solutions
523(1)
17.6 Dual Cell HSDPA and HSUPA
524(2)
17.7 Multicarrier and Multiband HSDPA
526(1)
17.8 Uplink 16QAM
527(1)
17.9 Terminal Categories
528(1)
17.10 Layer 2 Optimization
529(2)
17.11 Single Frequency Network (SFN) MBMS
531(1)
17.12 Architecture Evolution
531(2)
17.13 Summary
533(4)
References
535(2)
Index 537
Harri Holma and Antti Toskala, Nokia Siemens Networks, Finland