Atjaunināt sīkdatņu piekrišanu

Microwave Tomography: Global Optimization, Parallelization and Performance Evaluation Softcover reprint of the original 1st ed. 2014 [Mīkstie vāki]

  • Formāts: Paperback / softback, 198 pages, height x width: 235x155 mm, weight: 3802 g, 112 Illustrations, color; 5 Illustrations, black and white; XVII, 198 p. 117 illus., 112 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 03-Sep-2016
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1493945777
  • ISBN-13: 9781493945771
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 198 pages, height x width: 235x155 mm, weight: 3802 g, 112 Illustrations, color; 5 Illustrations, black and white; XVII, 198 p. 117 illus., 112 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 03-Sep-2016
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1493945777
  • ISBN-13: 9781493945771
Citas grāmatas par šo tēmu:
This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.

Introduction to Microwave Imaging.- Sequential Forward Solver.- Global Optimization: Differential Evolution, Genetic Algorithms, Particle Swarm and Hybrid Methods.- Sequential Optimization: Genetic Algorithm.- Inclusion of A Priori Information using Neural Networks.- Parallel Forward Solver.- Parallel Optimization Methods.- Benchmarking Parallel Evolutionary Algorithms.

Sima Noghanian is an associate professor and chair of the Antenna and Applied Electromagnetics department of the University of North Dakota. 

Travis Desell is an assistant professor at the University of North Dakota.

Abas Sabouni is a research associate at Concordia University.

Ali Ashtari is the lead researcher at Invenia Technical Computing.