Preface |
|
xi | |
|
|
1 | (12) |
|
|
1 | (3) |
|
|
4 | (2) |
|
1.3 Probabilistic Reasoning |
|
|
6 | (2) |
|
|
8 | (4) |
|
1.5 What Is Not Covered in This Book |
|
|
12 | (1) |
|
|
13 | (14) |
|
|
13 | (1) |
|
2.2 Syntax of Propositional Sentences |
|
|
13 | (2) |
|
2.3 Semantics of Propositional Sentences |
|
|
15 | (3) |
|
2.4 The Monotonicity of Logical Reasoning |
|
|
18 | (1) |
|
2.5 Multivalued Variables |
|
|
19 | (1) |
|
2.6 Variable Instantiations and Related Notations |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
24 | (1) |
|
|
25 | (2) |
|
|
27 | (26) |
|
|
27 | (1) |
|
|
27 | (3) |
|
|
30 | (4) |
|
|
34 | (3) |
|
3.5 Further Properties of Beliefs |
|
|
37 | (2) |
|
|
39 | (7) |
|
3.7 Continuous Variables as Soft Evidence |
|
|
46 | (3) |
|
|
48 | (1) |
|
|
49 | (4) |
|
|
53 | (23) |
|
|
53 | (1) |
|
4.2 Capturing Independence Graphically |
|
|
53 | (3) |
|
4.3 Parameterizing the Independence Structure |
|
|
56 | (2) |
|
4.4 Properties of Probabilistic Independence |
|
|
58 | (5) |
|
4.5 A Graphical Test of Independence |
|
|
63 | (5) |
|
4.6 More on DAGs and Independence |
|
|
68 | (4) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
75 | (1) |
|
5 Building Bayesian Networks |
|
|
76 | (50) |
|
|
76 | (1) |
|
5.2 Reasoning with Bayesian Networks |
|
|
76 | (8) |
|
5.3 Modeling with Bayesian Networks |
|
|
84 | (30) |
|
5.4 Dealing with Large CPTs |
|
|
114 | (5) |
|
5.5 The Significance of Network Parameters |
|
|
119 | (3) |
|
|
121 | (1) |
|
|
122 | (4) |
|
6 Inference by Variable Elimination |
|
|
126 | (26) |
|
|
126 | (1) |
|
6.2 The Process of Elimination |
|
|
126 | (2) |
|
|
128 | (3) |
|
6.4 Elimination as a Basis for Inference |
|
|
131 | (2) |
|
6.5 Computing Prior Marginals |
|
|
133 | (2) |
|
6.6 Choosing an Elimination Order |
|
|
135 | (3) |
|
6.7 Computing Posterior Marginals |
|
|
138 | (3) |
|
6.8 Network Structure and Complexity |
|
|
141 | (2) |
|
6.9 Query Structure and Complexity |
|
|
143 | (4) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (3) |
|
|
151 | (1) |
|
7 Inference by Factor Elimination |
|
|
152 | (26) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (2) |
|
7.4 Separators and Clusters |
|
|
157 | (2) |
|
7.5 A Message-Passing Formulation |
|
|
159 | (5) |
|
7.6 The Jointree Connection |
|
|
164 | (2) |
|
7.7 The Jointree Algorithm: A Classical View |
|
|
166 | (7) |
|
|
172 | (1) |
|
|
173 | (3) |
|
|
176 | (2) |
|
8 Inference by Conditioning |
|
|
178 | (24) |
|
|
178 | (1) |
|
|
178 | (3) |
|
8.3 Recursive Conditioning |
|
|
181 | (7) |
|
|
188 | (1) |
|
|
189 | (3) |
|
8.6 The Cache Allocation Problem |
|
|
192 | (5) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (4) |
|
9 Models for Graph Decomposition |
|
|
202 | (41) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (13) |
|
|
216 | (8) |
|
|
224 | (5) |
|
|
229 | (3) |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
234 | (2) |
|
|
236 | (7) |
|
10 Most Likely Instantiations |
|
|
243 | (27) |
|
|
243 | (1) |
|
10.2 Computing MPE Instantiations |
|
|
244 | (14) |
|
10.3 Computing MAP Instantiations |
|
|
258 | (7) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (3) |
|
11 The Complexity of Probabilistic Inference |
|
|
270 | (17) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
272 | (2) |
|
|
274 | (1) |
|
11.5 Complexity of MAP on Polytrees |
|
|
275 | (1) |
|
11.6 Reducing Probability of Evidence to Weighted Model Counting |
|
|
276 | (4) |
|
11.7 Reducing MPE to W-MAXSAT |
|
|
280 | (3) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (3) |
|
12 Compiling Bayesian Networks |
|
|
287 | (26) |
|
|
287 | (2) |
|
|
289 | (2) |
|
|
291 | (9) |
|
|
300 | (6) |
|
|
306 | (1) |
|
|
306 | (3) |
|
|
309 | (4) |
|
13 Inference with Local Structure |
|
|
313 | (27) |
|
|
313 | (1) |
|
13.2 The Impact of Local Structure on Inference Complexity |
|
|
313 | (6) |
|
13.3 CNF Encodings with Local Structure |
|
|
319 | (4) |
|
13.4 Conditioning with Local Structure |
|
|
323 | (3) |
|
13.5 Elimination with Local Structure |
|
|
326 | (11) |
|
|
336 | (1) |
|
|
337 | (3) |
|
14 Approximate Inference by Belief Propagation |
|
|
340 | (38) |
|
|
340 | (1) |
|
14.2 The Belief Propagation Algorithm |
|
|
340 | (3) |
|
14.3 Iterative Belief Propagation |
|
|
343 | (3) |
|
14.4 The Semantics of IBP |
|
|
346 | (3) |
|
14.5 Generalized Belief Propagation |
|
|
349 | (1) |
|
|
350 | (2) |
|
14.7 Iterative Joingraph Propagation |
|
|
352 | (2) |
|
14.8 Edge-Deletion Semantics of Belief Propagation |
|
|
354 | (11) |
|
|
364 | (1) |
|
|
365 | (5) |
|
|
370 | (8) |
|
15 Approximate Inference by Stochastic Sampling |
|
|
378 | (39) |
|
|
378 | (1) |
|
15.2 Simulating a Bayesian Network |
|
|
378 | (3) |
|
|
381 | (4) |
|
|
385 | (7) |
|
15.5 Estimating a Conditional Probability |
|
|
392 | (1) |
|
|
393 | (8) |
|
15.7 Markov Chain Simulation |
|
|
401 | (7) |
|
|
407 | (1) |
|
|
408 | (3) |
|
|
411 | (6) |
|
|
417 | (22) |
|
|
417 | (1) |
|
|
417 | (10) |
|
|
427 | (7) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
435 | (4) |
|
17 Learning: The Maximum Likelihood Approach |
|
|
439 | (38) |
|
|
439 | (2) |
|
17.2 Estimating Parameters from Complete Data |
|
|
441 | (3) |
|
17.3 Estimating Parameters from Incomplete Data |
|
|
444 | (11) |
|
17.4 Learning Network Structure |
|
|
455 | (6) |
|
17.5 Searching for Network Structure |
|
|
461 | (6) |
|
|
466 | (1) |
|
|
467 | (3) |
|
|
470 | (7) |
|
18 Learning: The Bayesian Approach |
|
|
477 | (38) |
|
|
477 | (2) |
|
|
479 | (3) |
|
18.3 Learning with Discrete Parameter Sets |
|
|
482 | (7) |
|
18.4 Learning with Continuous Parameter Sets |
|
|
489 | (9) |
|
18.5 Learning Network Structure |
|
|
498 | (7) |
|
|
504 | (1) |
|
|
505 | (3) |
|
|
508 | (7) |
A Notation |
|
515 | (2) |
B Concepts from Information Theory |
|
517 | (3) |
C Fixed Point Iterative Methods |
|
520 | (3) |
D Constrained Optimization |
|
523 | (4) |
Bibliography |
|
527 | (14) |
Index |
|
541 | |