Preface |
|
xi | |
|
|
1 | (12) |
|
|
1 | (3) |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (4) |
|
What is Not Covered in This Book |
|
|
12 | (1) |
|
|
13 | (14) |
|
|
13 | (1) |
|
Syntax of Propositional Sentences |
|
|
13 | (2) |
|
Semantics of Propositional Sentences |
|
|
15 | (3) |
|
The Monotonicity of Logical Reasoning |
|
|
18 | (1) |
|
|
19 | (1) |
|
Variable Instantiations and Related Notations |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
24 | (1) |
|
|
25 | (2) |
|
|
27 | (26) |
|
|
27 | (1) |
|
|
27 | (3) |
|
|
30 | (4) |
|
|
34 | (3) |
|
Further Properties of Beliefs |
|
|
37 | (2) |
|
|
39 | (7) |
|
Continuous Variables as Soft Evidence |
|
|
46 | (3) |
|
|
48 | (1) |
|
|
49 | (4) |
|
|
53 | (23) |
|
|
53 | (1) |
|
Capturing Independence Graphically |
|
|
53 | (3) |
|
Parameterizing the Independence Structure |
|
|
56 | (2) |
|
Properties of Probabilistic Independence |
|
|
58 | (5) |
|
A Graphical Test of Independence |
|
|
63 | (5) |
|
More on DAGs and Independence |
|
|
68 | (4) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
75 | (1) |
|
Building Bayesian Networks |
|
|
76 | (50) |
|
|
76 | (1) |
|
Reasoning with Bayesian Networks |
|
|
76 | (8) |
|
Modeling with Bayesian Networks |
|
|
84 | (30) |
|
|
114 | (5) |
|
The Significance of Network Parameters |
|
|
119 | (3) |
|
|
121 | (1) |
|
|
122 | (4) |
|
Inference by Variable Elimination |
|
|
126 | (26) |
|
|
126 | (1) |
|
The Process of Elimination |
|
|
126 | (2) |
|
|
128 | (3) |
|
Elimination as a Basis for Inference |
|
|
131 | (2) |
|
Computing Prior Marginals |
|
|
133 | (2) |
|
Choosing an Elimination Order |
|
|
135 | (3) |
|
Computing Posterior Marginals |
|
|
138 | (3) |
|
Network Structure and Complexity |
|
|
141 | (2) |
|
Query Structure and Complexity |
|
|
143 | (4) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (3) |
|
|
151 | (1) |
|
Inference by Factor Elimination |
|
|
152 | (26) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (2) |
|
|
157 | (2) |
|
A Message-Passing Formulation |
|
|
159 | (5) |
|
|
164 | (2) |
|
The Jointree Algorithm: A Classical View |
|
|
166 | (7) |
|
|
172 | (1) |
|
|
173 | (3) |
|
|
176 | (2) |
|
Inference by Conditioning |
|
|
178 | (24) |
|
|
178 | (1) |
|
|
178 | (3) |
|
|
181 | (7) |
|
|
188 | (1) |
|
|
189 | (3) |
|
The Cache Allocation Problem |
|
|
192 | (5) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (4) |
|
Models for Graph Decomposition |
|
|
202 | (41) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (13) |
|
|
216 | (8) |
|
|
224 | (5) |
|
|
229 | (3) |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
234 | (2) |
|
|
236 | (7) |
|
Most Likely Instantiations |
|
|
243 | (27) |
|
|
243 | (1) |
|
Computing MPE Instantiations |
|
|
244 | (14) |
|
Computing MAP Instantiations |
|
|
258 | (7) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (3) |
|
The complexity of Probabilistic Inference |
|
|
270 | (17) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
272 | (2) |
|
|
274 | (1) |
|
Complexity of MAP on Polytrees |
|
|
275 | (1) |
|
Reducing Probability of Evidence to Weighted Model Counting |
|
|
276 | (4) |
|
|
280 | (3) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (3) |
|
Compiling Bayesian Networks |
|
|
287 | (26) |
|
|
287 | (2) |
|
|
289 | (2) |
|
|
291 | (9) |
|
|
300 | (6) |
|
|
306 | (1) |
|
|
306 | (3) |
|
|
309 | (4) |
|
Inference with Local Structure |
|
|
313 | (27) |
|
|
313 | (1) |
|
The Impact of Local Structure on Inference Complexity |
|
|
313 | (6) |
|
CNF Encodings with Local Structure |
|
|
319 | (4) |
|
Conditioning with Local Structure |
|
|
323 | (3) |
|
Elimination with Local Structure |
|
|
326 | (11) |
|
|
336 | (1) |
|
|
337 | (3) |
|
Approximate Inference by Belief Propagation |
|
|
340 | (38) |
|
|
340 | (1) |
|
The Belief Propagation Algorithm |
|
|
340 | (3) |
|
Iterative Belief Propagation |
|
|
343 | (3) |
|
|
346 | (3) |
|
Generalized Belief Propagation |
|
|
349 | (1) |
|
|
350 | (2) |
|
Iterative Joingraph Propagation |
|
|
352 | (2) |
|
Edge-Deletion Semantics of Belief Propagation |
|
|
354 | (11) |
|
|
364 | (1) |
|
|
365 | (5) |
|
|
370 | (8) |
|
Approximate Inference by Stochastic Sampling |
|
|
378 | (39) |
|
|
378 | (1) |
|
Simulating a Bayesian Network |
|
|
378 | (3) |
|
|
381 | (4) |
|
|
385 | (7) |
|
Estimating a Conditional Probability |
|
|
392 | (1) |
|
|
393 | (8) |
|
|
401 | (7) |
|
|
407 | (1) |
|
|
408 | (3) |
|
|
411 | (6) |
|
|
417 | (22) |
|
|
417 | (1) |
|
|
417 | (10) |
|
|
427 | (7) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
435 | (4) |
|
Learning: The Maximum Likelihood Approach |
|
|
439 | (38) |
|
|
439 | (2) |
|
Estimating Parameters from Complete Data |
|
|
441 | (3) |
|
Estimating Parameters from Incomplete Data |
|
|
444 | (11) |
|
Learning Network Structure |
|
|
455 | (6) |
|
Searching for Network Structure |
|
|
461 | (6) |
|
|
466 | (1) |
|
|
467 | (3) |
|
|
470 | (7) |
|
Learning: The Bayesian Approach |
|
|
477 | (50) |
|
|
477 | (2) |
|
|
479 | (3) |
|
Learning with Discrete Parameter Sets |
|
|
482 | (7) |
|
Learning with Continuous Parameter Sets |
|
|
489 | (9) |
|
Learning Network Structure |
|
|
498 | (7) |
|
|
504 | (1) |
|
|
505 | (3) |
|
|
508 | (19) |
|
|
515 | (2) |
|
Concepts from Information Theory |
|
|
517 | (3) |
|
Fixed Point Iterative Methods |
|
|
520 | (3) |
|
|
523 | (4) |
Bibliography |
|
527 | (14) |
Index |
|
541 | |