Contributors |
|
ix | |
Preface |
|
xi | |
|
Chapter 1 Introduction to multilevel voltage source inverters |
|
|
1 | (28) |
|
|
|
1 | (5) |
|
1.2 Conventional multilevel inverter topologies |
|
|
6 | (9) |
|
1.2.1 Neutral point clamped MLI |
|
|
8 | (2) |
|
1.2.2 Flying capacitor MLI |
|
|
10 | (1) |
|
|
11 | (4) |
|
1.3 Soft switching and resonant multilevel inverters |
|
|
15 | (8) |
|
1.4 Fundamentals of control schemes |
|
|
23 | (6) |
|
|
26 | (3) |
|
Chapter 2 Neutral-point-clamped and T-type multilevel inverters |
|
|
29 | (28) |
|
|
|
2.1 Neutral-point-clamped multilevel inverters |
|
|
29 | (14) |
|
2.1.1 Converter configuration |
|
|
30 | (1) |
|
2.1.2 Switching states and commutation |
|
|
31 | (2) |
|
2.1.3 Modulation techniques |
|
|
33 | (2) |
|
2.1.4 Finite set model predictive control of a three-phase three-level neutral-point-clamped inverter |
|
|
35 | (8) |
|
|
43 | (11) |
|
2.2.1 Description of T-type inverter and its operating principle |
|
|
43 | (3) |
|
2.2.2 Switch open-circuit fault |
|
|
46 | (2) |
|
2.2.3 Switch short-circuit fault |
|
|
48 | (1) |
|
2.2.4 Modulation of T-type inverter |
|
|
48 | (2) |
|
2.2.5 Influence of the switching states on DC capacitor voltages |
|
|
50 | (2) |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
54 | (1) |
|
|
55 | (2) |
|
Chapter 3 Conventional H-bridge and recent multilevel inverter topologies |
|
|
57 | (54) |
|
|
|
|
|
57 | (2) |
|
3.2 H-bridge inverter topology |
|
|
59 | (1) |
|
3.3 Common mode voltage and leakage current |
|
|
60 | (3) |
|
|
63 | (7) |
|
|
63 | (3) |
|
|
66 | (2) |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (5) |
|
|
77 | (4) |
|
3.8 Recent H-bridge based multilevel topologies |
|
|
81 | (23) |
|
3.8.1 Optimized H5 topology |
|
|
83 | (1) |
|
3.8.2 H6-I and H6-II inverter topology |
|
|
83 | (5) |
|
|
88 | (1) |
|
|
88 | (4) |
|
3.8.5 Passive clamped H6 topology |
|
|
92 | (6) |
|
|
98 | (1) |
|
|
99 | (1) |
|
3.8.8 Active clamped HERIC topology |
|
|
99 | (5) |
|
3.9 Remarks and conclusion |
|
|
104 | (7) |
|
|
108 | (3) |
|
Chapter 4 Packed U-Cell topology: Structure, control, and challenges |
|
|
111 | (36) |
|
|
|
|
|
|
112 | (1) |
|
4.2 Packed U-cell topology |
|
|
112 | (3) |
|
4.2.1 Mathematical modeling |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (20) |
|
4.3.1 Finite set model predictive control |
|
|
116 | (2) |
|
4.3.2 Multicarrier pulse width modulation |
|
|
118 | (6) |
|
4.3.3 Lyapunov-based model predictive control |
|
|
124 | (3) |
|
4.3.4 Sliding mode control |
|
|
127 | (1) |
|
4.3.5 Reduced sensor control |
|
|
128 | (7) |
|
|
135 | (6) |
|
|
136 | (1) |
|
4.4.2 Grid-connected mode |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
4.4.6 PUC5 three-phase inverter |
|
|
138 | (3) |
|
4.5 Commercialization challenges |
|
|
141 | (2) |
|
4.5.1 Building a mass-producible product out of a laboratory concept |
|
|
142 | (1) |
|
4.5.2 Achieving product/market requirement |
|
|
142 | (1) |
|
4.5.3 Keeping the costs/benefits/reliability balance over time |
|
|
143 | (1) |
|
|
143 | (4) |
|
|
144 | (1) |
|
|
144 | (3) |
|
Chapter 5 Modular multilevel converters |
|
|
147 | (34) |
|
|
|
|
|
|
148 | (2) |
|
5.2 Fundamentals of a modular multilevel converter |
|
|
150 | (6) |
|
5.2.1 Principle of operation |
|
|
151 | (1) |
|
5.2.2 Submodule configurations |
|
|
152 | (4) |
|
5.3 Classical control methods |
|
|
156 | (2) |
|
5.4 Pulse width modulation schemes |
|
|
158 | (3) |
|
5.4.1 Phase-shifted carrier modulation scheme |
|
|
159 | (1) |
|
5.4.2 Staircase modulation scheme |
|
|
160 | (1) |
|
5.5 Submodule capacitor voltage control |
|
|
161 | (4) |
|
5.5.1 Leg voltage control |
|
|
161 | (1) |
|
5.5.2 Voltage balancing strategy |
|
|
162 | (3) |
|
|
165 | (5) |
|
5.6.1 Output current control |
|
|
165 | (2) |
|
5.6.2 Circulating current control |
|
|
167 | (3) |
|
|
170 | (4) |
|
5.7.1 HVDC transmission systems |
|
|
170 | (2) |
|
5.7.2 Offshore wind farms |
|
|
172 | (1) |
|
5.7.3 Medium-voltage motor drives |
|
|
172 | (2) |
|
5.7.4 Power quality improvement |
|
|
174 | (1) |
|
|
174 | (7) |
|
|
176 | (5) |
|
Chapter 6 Asymmetrical multilevel inverter topologies |
|
|
181 | (36) |
|
|
|
|
|
181 | (3) |
|
6.2 Asymmetric multilevel inverter with polarity generation part |
|
|
184 | (13) |
|
6.2.1 Multilevel DC link inverter |
|
|
184 | (5) |
|
6.2.2 Simplified asymmetric multilevel inverter |
|
|
189 | (4) |
|
6.2.3 Switched capacitor cell hybrid multilevel inverter |
|
|
193 | (2) |
|
6.2.4 Reduced component asymmetric multilevel inverter |
|
|
195 | (2) |
|
6.3 Asymmetric MLI topologies without polarity generation module |
|
|
197 | (14) |
|
6.3.1 Asymmetric cascade multilevel inverter |
|
|
197 | (3) |
|
6.3.2 Cascaded basic blocks multilevel inverter |
|
|
200 | (3) |
|
6.3.3 Cascaded modified H-bridge multilevel inverter |
|
|
203 | (1) |
|
6.3.4 Cross connected sources based multilevel inverter |
|
|
204 | (7) |
|
6.4 Remarks and conclusion |
|
|
211 | (6) |
|
|
214 | (3) |
|
Chapter 7 Resonant and Z-source multilevel inverters |
|
|
217 | (42) |
|
|
|
7.1 General operating principle of resonant circuits |
|
|
218 | (5) |
|
7.2 General operating principle of impedance-source networks |
|
|
223 | (9) |
|
7.3 Overview of multilevel inverters |
|
|
232 | (4) |
|
7.4 Resonant multilevel inverters: Main circuits |
|
|
236 | (3) |
|
7.5 Impedance source-derived multilevel inverters: Control, benefits, and applications |
|
|
239 | (12) |
|
|
251 | (8) |
|
|
252 | (7) |
Index |
|
259 | |