Atjaunināt sīkdatņu piekrišanu

E-grāmata: Multilevel Inverters: Introduction and Emergent Topologies

Edited by (Professor, Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Nevsehir Hac Bektas Veli University, Nevsehir, Turkey)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2021
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128232392
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 166,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2021
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128232392
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers.

  • Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies
  • Assesses how to systematically deploy and control multilevel power inverters in application scenarios
  • Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators
Contributors ix
Preface xi
Chapter 1 Introduction to multilevel voltage source inverters
1(28)
Ersan Kabalci
1.1 Introduction
1(5)
1.2 Conventional multilevel inverter topologies
6(9)
1.2.1 Neutral point clamped MLI
8(2)
1.2.2 Flying capacitor MLI
10(1)
1.2.3 H-bridge MLI
11(4)
1.3 Soft switching and resonant multilevel inverters
15(8)
1.4 Fundamentals of control schemes
23(6)
References
26(3)
Chapter 2 Neutral-point-clamped and T-type multilevel inverters
29(28)
Hasan Komurcugil
Sertac Bayhan
2.1 Neutral-point-clamped multilevel inverters
29(14)
2.1.1 Converter configuration
30(1)
2.1.2 Switching states and commutation
31(2)
2.1.3 Modulation techniques
33(2)
2.1.4 Finite set model predictive control of a three-phase three-level neutral-point-clamped inverter
35(8)
2.2 T-type inverter
43(11)
2.2.1 Description of T-type inverter and its operating principle
43(3)
2.2.2 Switch open-circuit fault
46(2)
2.2.3 Switch short-circuit fault
48(1)
2.2.4 Modulation of T-type inverter
48(2)
2.2.5 Influence of the switching states on DC capacitor voltages
50(2)
2.2.6 Simulation results
52(2)
2.3 Conclusion
54(3)
Acknowledgment
54(1)
References
55(2)
Chapter 3 Conventional H-bridge and recent multilevel inverter topologies
57(54)
Ilhami Colak
Ersan Kabalci
Gokhan Keven
3.1 Introduction
57(2)
3.2 H-bridge inverter topology
59(1)
3.3 Common mode voltage and leakage current
60(3)
3.4 Modulation strategy
63(7)
3.4.1 Bipolar SPWM
63(3)
3.4.2 Unipolar SPWM
66(2)
3.4.3 Hybrid SPWM
68(2)
3.5 H5 inverter topology
70(2)
3.6 H6 inverter topology
72(5)
3.7 HERIC inverter
77(4)
3.8 Recent H-bridge based multilevel topologies
81(23)
3.8.1 Optimized H5 topology
83(1)
3.8.2 H6-I and H6-II inverter topology
83(5)
3.8.3 H6-III
88(1)
3.8.4 H6-IV topology
88(4)
3.8.5 Passive clamped H6 topology
92(6)
3.8.6 HB-ZVR topology
98(1)
3.8.7 HBZVR-D topology
99(1)
3.8.8 Active clamped HERIC topology
99(5)
3.9 Remarks and conclusion
104(7)
References
108(3)
Chapter 4 Packed U-Cell topology: Structure, control, and challenges
111(36)
Mohamed Trabelsi
Hamza Makhamreh
Osman Kukrer
Hani Vahedi
4.1 Introduction
112(1)
4.2 Packed U-cell topology
112(3)
4.2.1 Mathematical modeling
113(2)
4.2.2 Control challenges
115(1)
4.3 Control techniques
115(20)
4.3.1 Finite set model predictive control
116(2)
4.3.2 Multicarrier pulse width modulation
118(6)
4.3.3 Lyapunov-based model predictive control
124(3)
4.3.4 Sliding mode control
127(1)
4.3.5 Reduced sensor control
128(7)
4.4 Applications
135(6)
4.4.1 Stand-alone mode
136(1)
4.4.2 Grid-connected mode
136(1)
4.4.3 PUC5 rectifier
136(1)
4.4.4 PUC5-based STATCOM
137(1)
4.4.5 PUC5-based DVR
137(1)
4.4.6 PUC5 three-phase inverter
138(3)
4.5 Commercialization challenges
141(2)
4.5.1 Building a mass-producible product out of a laboratory concept
142(1)
4.5.2 Achieving product/market requirement
142(1)
4.5.3 Keeping the costs/benefits/reliability balance over time
143(1)
4.6 Conclusions
143(4)
Acknowledgment
144(1)
References
144(3)
Chapter 5 Modular multilevel converters
147(34)
Apparao Dekka
Venkata Yaramasu
Ricardo Lizana Fuentes
Deepak Ronanki
5.1 Introduction
148(2)
5.2 Fundamentals of a modular multilevel converter
150(6)
5.2.1 Principle of operation
151(1)
5.2.2 Submodule configurations
152(4)
5.3 Classical control methods
156(2)
5.4 Pulse width modulation schemes
158(3)
5.4.1 Phase-shifted carrier modulation scheme
159(1)
5.4.2 Staircase modulation scheme
160(1)
5.5 Submodule capacitor voltage control
161(4)
5.5.1 Leg voltage control
161(1)
5.5.2 Voltage balancing strategy
162(3)
5.6 Current control
165(5)
5.6.1 Output current control
165(2)
5.6.2 Circulating current control
167(3)
5.7 Applications
170(4)
5.7.1 HVDC transmission systems
170(2)
5.7.2 Offshore wind farms
172(1)
5.7.3 Medium-voltage motor drives
172(2)
5.7.4 Power quality improvement
174(1)
5.8 Conclusions
174(7)
References
176(5)
Chapter 6 Asymmetrical multilevel inverter topologies
181(36)
Ilhami Colak
Ersan Kabalci
Gokhan Keven
6.1 Introduction
181(3)
6.2 Asymmetric multilevel inverter with polarity generation part
184(13)
6.2.1 Multilevel DC link inverter
184(5)
6.2.2 Simplified asymmetric multilevel inverter
189(4)
6.2.3 Switched capacitor cell hybrid multilevel inverter
193(2)
6.2.4 Reduced component asymmetric multilevel inverter
195(2)
6.3 Asymmetric MLI topologies without polarity generation module
197(14)
6.3.1 Asymmetric cascade multilevel inverter
197(3)
6.3.2 Cascaded basic blocks multilevel inverter
200(3)
6.3.3 Cascaded modified H-bridge multilevel inverter
203(1)
6.3.4 Cross connected sources based multilevel inverter
204(7)
6.4 Remarks and conclusion
211(6)
References
214(3)
Chapter 7 Resonant and Z-source multilevel inverters
217(42)
Oleksandr Husev
Carlos Roncero-Clemente
7.1 General operating principle of resonant circuits
218(5)
7.2 General operating principle of impedance-source networks
223(9)
7.3 Overview of multilevel inverters
232(4)
7.4 Resonant multilevel inverters: Main circuits
236(3)
7.5 Impedance source-derived multilevel inverters: Control, benefits, and applications
239(12)
7.6 Conclusions
251(8)
References
252(7)
Index 259
Ersan Kabalci is Department Head of Electrical and Electronics Engineering at Nevsehir University, Turkey. He received his MSc and PhD in Electrical and Electronics Engineering from Gazi University, Turkey, where his research focused on implementing an enhanced modulation scheme for multilevel inverters. Dr. Kabalci also serves as an Associate Editor for several international indexed journals and as a reviewer for more than 25 international journals on power electronics and renewable energy sources. His current research interests include power electronic applications and drives for renewable energy sources, microgrids, distributed generation, power line communication, and smart grid applications. He has been a member of the IEEE since 2009.