Atjaunināt sīkdatņu piekrišanu

Nanofabrication: Principles to Laboratory Practice [Hardback]

(University of Dayton, OH,USA)
  • Formāts: Hardback, 316 pages, height x width: 254x178 mm, weight: 796 g, 22 Tables, black and white; 24 Illustrations, color; 226 Illustrations, black and white
  • Sērija : Optical Sciences and Applications of Light
  • Izdošanas datums: 21-Oct-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498725570
  • ISBN-13: 9781498725576
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 191,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 316 pages, height x width: 254x178 mm, weight: 796 g, 22 Tables, black and white; 24 Illustrations, color; 226 Illustrations, black and white
  • Sērija : Optical Sciences and Applications of Light
  • Izdošanas datums: 21-Oct-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498725570
  • ISBN-13: 9781498725576
Citas grāmatas par šo tēmu:

This book is designed to introduce typical cleanroom processes, techniques, and their fundamental principles. It is written for the practicing scientist or engineer, with a focus on being able to transition the information from the book to the laboratory. Basic theory such as electromagnetics and electrochemistry is described in as much depth as necessary to understand and explain the current practice and their limitations. Examples from various areas of interest will be covered, such as the fabrication of photonic devices including photo detectors, waveguides, and optical coatings, which are not commonly found in other fabrication texts.

Recenzijas

"Dr. Sarangan has done an excellent job of providing a practical text for scientists and technologists interested in the principles of nanofabrication. This book would serve as a relatively comprehensive reference text for anyone beginning the journey of creating solutions in the science of very small things." Greg Peake, Sandia National Laboratories, Albuquerque, New Mexico, USA

"This book is beneficial to the community of nanoscience and nanotechnology." Yongyuan Jiang, Harbin Institute of Technology, China

"Overall, the book is an excellent source for new, as well as, highly experienced engineers in the field of device fabrication. It presents easy to understand descriptions of very complicated processes and techniques. The numerical examples offer tremendous insight into what is physically being done during device fabrication. Dr. Saragan has done an excellent service to the community by authoring this text." Ronald A. Coutu, Jr., Marquette University, Milwaukee, Wisconsin, USA

Series Preface xi
Preface xiii
Author xv
Chapter 1 Introduction to Micro- and Nanofabrication
1(12)
1.1 Introduction to Micro- and Nanofabrication
1(4)
1.1.1 Importance of Understanding the Techniques
1(1)
1.1.2 Creative Problem Solving
2(1)
1.1.3 What Has Been Done by Others versus What You Can Do
2(1)
1.1.4 Experiment versus Project
2(1)
1.1.5 Nano and the Media
3(1)
1.1.6 Carbon versus Silicon and Self-Assembly versus Micromachining
3(1)
1.1.7 Nanotechnology Is Old
3(1)
1.1.8 Moore's Prediction and Driving Forces
4(1)
1.1.9 Why Components Have to Be Small
4(1)
1.1.10 Nanofabrication Is a Multidisciplinary Science
5(1)
1.1.11 Units of Measure
5(1)
1.2 Cleanrooms for Device Fabrication: Basic Concepts
5(8)
1.2.1 Cleanroom Classification and Airflow Rates
7(2)
1.2.2 Particle Count Measurement
9(1)
1.2.3 Service Access
9(1)
1.2.4 Humidity, Temperature, and Lighting
10(1)
1.2.5 Safety
10(1)
Problems
10(1)
Laboratory Exercise
11(1)
References
11(2)
Chapter 2 Fundamentals of Vacuum and Plasma Technology
13(40)
2.1 Fundamentals of Vacuum
13(19)
2.1.1 Conductance
15(1)
2.1.2 Pumping
16(2)
2.1.3 Effect of a Vacuum Hose
18(1)
2.1.4 Rough Vacuum
19(4)
2.1.5 High-Vacuum Pumps
23(1)
2.1.5.1 Turbo Molecular Pumps
23(3)
2.1.5.2 Cryo Pumps
26(3)
2.1.6 Leaks
29(1)
2.1.7 Adsorption and Desorption
29(2)
2.1.8 Types of Pumps
31(1)
2.2 Pressure and Flow Measurements
32(5)
2.2.1 Pressure (or Vacuum) Measurement
32(4)
2.2.2 Gas Flow Rate Measurement
36(1)
2.3 Fundamentals of Plasmas for Device Fabrication
37(16)
2.3.1 Parallel Plate Configuration
38(4)
2.3.2 Electron and Bulk Gas Temperature
42(3)
2.3.3 Langmuir's Probe
45(1)
2.3.4 DC Ion Sputtering and Implantation
46(1)
2.3.5 RF Plasma
47(3)
2.3.6 Other Electrical Plasmas
50(1)
Problems
51(1)
Laboratory Exercises
51(1)
References
51(2)
Chapter 3 Physical and Chemical Vapor Deposition
53(46)
3.1 Physical Vapor Deposition
53(24)
3.1.1 Thermal Evaporation
53(2)
3.1.1.1 Resistance Heating Method
55(1)
3.1.1.2 Electron Beam Evaporation
55(4)
3.1.1.3 Thermal Evaporation Rate from the Source
59(1)
3.1.1.4 Deposition Rate and Distribution
60(1)
3.1.1.5 E-Beam Evaporation of Dielectrics
61(1)
3.1.1.6 Reactive Thermal Evaporation
62(1)
3.1.1.7 Thermal Evaporation of Alloys and Compounds
62(1)
3.1.1.8 Ion-Assisted Deposition
62(2)
3.1.2 Sputter Removal and Deposition
64(1)
3.1.2.1 Sputter Removal Mechanism
65(1)
3.1.2.2 Sputter Yield
66(3)
3.1.2.3 Magnetron Sputtering
69(1)
3.1.2.4 Sputter Removal Rate
69(1)
3.1.2.5 Sputter Deposition Rate
70(1)
3.1.2.6 Dependence of Sputter Deposition Rate on Pressure
71(1)
3.1.2.7 Energy of the Sputtered Atoms
71(1)
3.1.2.8 Sputter Up versus Sputter Down
72(1)
3.1.2.9 Compound Sputtering
73(1)
3.1.2.10 Co-Sputtering
74(1)
3.1.2.11 Reactive Sputtering
74(1)
3.1.2.12 Thermal Evaporation versus Sputtering
75(1)
3.1.3 Pulsed Laser Deposition
76(1)
3.2 Chemical Vapor Deposition
77(8)
3.2.1 Atmospheric Pressure Chemical Vapor Deposition
81(1)
3.2.2 Low-Pressure Chemical Vapor Deposition
82(1)
3.2.3 Plasma-Enhanced Chemical Vapor Deposition
83(1)
3.2.4 Atomic Layer Deposition
84(1)
3.3 Thin-Film Measurements
85(8)
3.3.1 Thickness Measurement with a Quartz Crystal Microbalance
85(2)
3.3.1.1 Temperature Sensitivity
87(1)
3.3.1.2 Tooling Factor
88(1)
3.3.1.3 Film Stress
88(1)
3.3.1.4 Deposition Energy
88(1)
3.3.1.5 Density and z-Ratio
88(1)
3.3.2 Thickness Measurement with a Stylus Profiler
89(1)
3.3.3 Measurement of Optical Properties
89(1)
3.3.4 Thin-Film Stress
89(1)
3.3.4.1 Origins of Film Stress
90(1)
3.3.4.2 Measurement of Stress
90(2)
3.3.4.3 Compressive Stress
92(1)
3.3.4.4 Tensile Stress
92(1)
3.3.4.5 Stress Reduction
93(1)
3.4 Thin-Film Materials
93(6)
3.4.1 Titanium
93(1)
3.4.2 Chromium
93(1)
3.4.3 Aluminum
93(1)
3.4.4 Copper
93(1)
3.4.5 Gold
94(1)
3.4.6 Silver
94(1)
3.4.7 Platinum
94(1)
3.4.8 Nickel
94(1)
3.4.9 Tungsten
94(1)
3.4.10 Molybdenum
94(1)
3.4.11 Vanadium
94(1)
3.4.12 Silicon
95(1)
3.4.13 Germanium
95(1)
3.4.14 Aluminum Oxide
95(1)
3.4.15 Magnesium Fluoride
95(1)
3.4.16 Silicon Dioxide
95(1)
3.4.17 Titanium Dioxide
95(1)
3.4.18 Niobium Oxide
95(1)
3.4.19 Zinc Sulfide
96(1)
3.4.20 Vanadium Oxide
96(1)
Problems
96(1)
Laboratory Exercises
96(1)
References
97(2)
Chapter 4 Thin-Film Optics
99(28)
4.1 Antireflection Coatings
99(9)
4.1.1 Fresnel Reflection
99(1)
4.1.2 Single-Layer Antireflection Coating
100(3)
4.1.3 Two-Layer Quarter-Wave Film Designs
103(2)
4.1.4 Two-Layer Non-Quarter-Wave Film Designs
105(3)
4.1.5 Three-Layer Antireflection Design
108(1)
4.2 Transfer Matrix Method for Modeling Optical Thin Films
108(3)
4.3 High-Reflection Dielectric Coatings
111(1)
4.4 Metal Film Optics
112(8)
4.4.1 Reflectance Properties of Metals
112(2)
4.4.2 Antireflection for Metals
114(3)
4.4.3 High Optical Transmission through Metals
117(3)
4.5 Optical Thin-Film Deposition
120(7)
Problems
124(1)
Laboratory Exercises
125(1)
References
125(2)
Chapter 5 Substrate Materials
127(12)
5.1 Silicon
128(6)
5.1.1 Silicon Wafer Manufacture
128(1)
5.1.1.1 Raw Material
128(1)
5.1.1.2 Crystal Growth
129(1)
5.1.1.3 Ingot Processing
129(1)
5.1.1.4 Wafer Saw
129(1)
5.1.1.5 Etching, Lapping, and Polishing
129(1)
5.1.1.6 Finished Silicon Wafers
130(1)
5.1.2 Silicon Crystal Orientations
130(1)
5.1.2.1 {100} Planes
131(1)
5.1.2.2 {110} Planes
131(1)
5.1.2.3 {111} Planes
131(1)
5.1.2.4 Other Crystal Planes
131(1)
5.1.2.5 Crystal Orientations and Their Properties
131(1)
5.1.2.6 (100) Wafer
132(1)
5.1.2.7 (110) Wafer
132(2)
5.2 Silica
134(1)
5.3 Sapphire
134(1)
5.4 Compound Semiconductors
135(1)
5.5 Properties of Substrates
136(3)
References
136(3)
Chapter 6 Lithography
139(70)
6.1 Substrate Cleaning and Preparation
139(3)
6.1.1 Acetone-Methanol-Isopropyl Alcohol (AMI) Cleaning
139(1)
6.1.2 Piranha (Sulfuric Peroxide Mixture) Cleaning
140(1)
6.1.3 RCA Cleaning
140(1)
6.1.4 Buffered Oxide Etch (BOE) Clean
140(1)
6.1.5 Plasma Cleaning
140(1)
6.1.6 Megasonic Cleaning
141(1)
6.1.7 Evaluation of Surface Quality
141(1)
6.2 Spin Coating
142(10)
6.2.1 Stage 1: Dispense Stage
142(1)
6.2.2 Stage 2: Spread Stage
142(1)
6.2.3 Stage 3: Thin-Out Stage
143(4)
6.2.4 Stage 4: Evaporation Stage
147(2)
6.2.5 Edge Bead
149(1)
6.2.6 Common Problems Encountered in Spin Coating
149(2)
6.2.7 Solvent Bake (Soft Bake)
151(1)
6.3 Photomasks
152(4)
6.3.1 Laser-Written Photomasks
152(2)
6.3.2 Film Photomasks
154(1)
6.3.3 Electron Beam-Written Photomasks
154(2)
6.4 UV Light Sources
156(1)
6.5 Contact Mask Lithography
157(3)
6.6 Projection Photolithography
160(3)
6.7 Basic Properties of Photoresists
163(21)
6.7.1 Components of Photoresists
163(2)
6.7.2 Effects of Moisture on Photoresist Performance
165(1)
6.7.3 Development
166(1)
6.7.4 Modeling the Optical Performance of Photoresists
166(1)
6.7.4.1 Dill Parameters
166(2)
6.7.4.2 Diffusion
168(1)
6.7.4.3 Numerical Shooting Method for Modeling the Optical Field
168(6)
6.7.4.4 Solubility Model
174(1)
6.7.4.5 Quasi-Two-Dimensional Model
175(3)
6.7.4.6 Bottom Antireflection Coatings
178(3)
6.7.5 Negative-Tone Photoresists
181(1)
6.7.6 Image Reversal
181(1)
6.7.7 Substrate Priming
182(2)
6.7.8 Hard Bake
184(1)
6.8 SU-8 Photoresist
184(3)
6.9 Patterning by Lithography
187(6)
6.9.1 Etch-Down Patterning
187(2)
6.9.2 Lift-Off Patterning
189(1)
6.9.3 Bilayer Lift-Off
190(1)
6.9.4 Etch-Down versus Lift-Off Patterning
190(1)
6.9.4.1 Film Adhesion
190(1)
6.9.4.2 Etch Chemistry
191(1)
6.9.4.3 Linewidth Control
191(1)
6.9.4.4 Film Thickness
191(1)
6.9.4.5 Outgassing
192(1)
6.9.5 Patterning by Planarization
192(1)
6.10 Laser Interference Lithography
193(2)
6.11 Resolution Enhancement Techniques
195(3)
6.11.1 Phase-Shifted Masks
196(1)
6.11.2 Optical Proximity Corrections
196(1)
6.11.3 Self-Aligned Double Patterning
196(2)
6.11.4 Directed Self-Assembly
198(1)
6.12 Extreme-UV Lithography
198(1)
6.13 Nonoptical Lithography
199(10)
6.13.1 Electron Beam Lithography
199(3)
6.13.2 Nanoimprint Lithography
202(1)
Problems
203(1)
Laboratory Exercises
203(1)
References
204(5)
Chapter 7 Wet Chemical and Plasma Etching
209(32)
7.1 Wet Chemical Etching
209(12)
7.1.1 Basic Principles
209(3)
7.1.2 Wet Chemical Etch of Selected Materials
212(1)
7.1.2.1 Silicon Dioxide Etch
212(2)
7.1.2.2 Silicon Nitride Etch
214(1)
7.1.2.3 Silicon Etch
215(1)
7.1.2.4 Aluminum Etch
215(1)
7.1.2.5 Copper Etch
215(1)
7.1.2.6 Titanium Etch
215(1)
7.1.2.7 Gold Etch
215(1)
7.1.2.8 Silver Etch
215(1)
7.1.3 Orientation-Dependent Wet Etching of Silicon
215(1)
7.1.3.1 (100) Silicon Etch with KOH
215(4)
7.1.3.2 (110) Silicon Etch with KOH
219(1)
7.1.3.3 Other Etchants for Orientation-Dependent Etching of Silicon
220(1)
7.2 Plasma Etching
221(20)
7.2.1 Basic Construction of a Plasma Etcher
222(1)
7.2.2 Free Radicals and Ions in a Plasma and Their Roles
223(4)
7.2.3 Inductively Coupled Plasma Etching
227(1)
7.2.4 Substrate Temperature
228(1)
7.2.5 Silicon Etching
228(1)
7.2.5.1 SF6 Plasma for Etching Silicon
229(2)
7.2.5.2 CF4 Plasma for Etching Silicon
231(1)
7.2.5.3 Mixed Gas Fluorine Plasmas for Etching Silicon
232(1)
7.2.5.4 Cl2 Plasma for Etching Silicon
233(1)
7.2.6 Photoresist Erosion in a Plasma Etch
234(3)
Problems
237(1)
Laboratory Exercises
238(1)
References
238(3)
Chapter 8 Doping, Surface Modifications, and Metal Contacts
241(38)
8.1 Thermal Budget
241(1)
8.2 Doping by Thermal Diffusion
242(12)
8.2.1 Vapor, Liquid, and Solid Dopant Sources
242(4)
8.2.2 Calculation of Diffusion Profiles
246(6)
8.2.3 Masking for Thermal Diffusion
252(2)
8.3 Ion Implantation
254(7)
8.3.1 Doping by Ion Implantation
254(4)
8.3.2 Masking Materials for Ion Implantation
258(1)
8.3.3 Implantation for Silicon-on-Insulator Substrates
258(3)
8.4 Thermal Oxidation of Silicon
261(7)
8.5 Metal Contacts to Semiconductors
268(11)
References
275(4)
Chapter 9 Metrology for Device Fabrication
279(10)
9.1 Semiconductor Device Fabrication Metrology
279(6)
9.1.1 Substrate Defect Metrology
279(1)
9.1.2 Lithography Metrology
279(3)
9.1.3 Gate Dielectrics
282(1)
9.1.4 Metrology for Ion Implantation
283(2)
9.2 Interconnect Metrology
285(4)
9.2.1 Low-e Dielectric Film Metrology
286(1)
9.2.2 Metal Layer Metrology
286(1)
9.2.3 CMP Metrology
286(1)
References
287(2)
Index 289
Andrew Sarangan is a professor and associate director of the Electro-Optics Graduate Program at the University of Dayton, Dayton, Ohio. Dr. Sarangans current research interests include semiconductor optoelectronics, nanofabrication, and computational electromagnetics. He has developed graduate courses in nanofabrication,nanophotonics, optical thin films, and integrated optics. He is a senior member of the IEEE and the SPIE and a registered professional engineer in the state of Ohio. He is also an accomplished pilot and a certificated flight instructor.