Atjaunināt sīkdatņu piekrišanu

Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 455 pages, height x width: 235x155 mm, weight: 869 g, 126 Illustrations, color; 16 Illustrations, black and white; XIV, 455 p. 142 illus., 126 illus. in color., 1 Hardback
  • Izdošanas datums: 16-Dec-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031160835
  • ISBN-13: 9783031160837
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 455 pages, height x width: 235x155 mm, weight: 869 g, 126 Illustrations, color; 16 Illustrations, black and white; XIV, 455 p. 142 illus., 126 illus. in color., 1 Hardback
  • Izdošanas datums: 16-Dec-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031160835
  • ISBN-13: 9783031160837
Citas grāmatas par šo tēmu:
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics” can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. 

Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks.

"Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. 

These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. 

"Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries. 

1 Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine: A Note from the Editors
1(14)
Ki-Taek Lim
Kamel A. Abd-Elsalam
1.1 Introduction
1(4)
1.2 Historical Background
5(3)
1.3 Overview of the Book
8(2)
1.4 Conclusion
10(5)
References
10(5)
2 Nanorobots for Drug Delivery, Surgery, and Biosensing
15(20)
Qing Ye
Jianfei Sun
2.1 Introduction
15(2)
2.2 Design of Nanorobots
17(4)
2.3 Application
21(6)
2.3.1 Drug Delivery
21(2)
2.3.2 Surgery
23(2)
2.3.3 Biosensing
25(2)
2.4 Conclusion
27(8)
References
28(7)
3 Biomolecule-Based Nanorobot for Targeted Delivery of Therapeutics
35(18)
Keya Ganguly
Sayan Deb Dutta
Dinesh K. Patel
Tejal V. Patil
Rachmi Luthfikasari
Ki-Taek Lim
3.1 Introduction
35(1)
3.2 DNA and Proteins
36(2)
3.3 CAD Systems for Bio-nanorobotics Simulation
38(1)
3.4 Biomolecule-Loaded Therapeutic Delivery
39(6)
3.4.1 Pharmaceuticals
39(2)
3.4.2 Biologies and Genes
41(1)
3.4.3 Living Cell-Based Therapies
42(3)
3.5 Selected Diseases
45(3)
3.5.1 Cancer
45(3)
3.6 Challenges and Prospects
48(5)
References
48(5)
4 Printable Nanorobots and Microswimmers for Therapeutic Advancement: Present Status and Future Opportunities
53(26)
Sayan Deb Dutta
Keya Ganguly
Dinesh K. Patel
Tejal V. Patil
Rachmi Luthfikasari
Ki-Taek Lim
4.1 Introduction
53(1)
4.2 Overview of 3D Printing Techniques for Nanorobot Fabrication
54(6)
4.2.1 Powder-Bed Fusion
55(1)
4.2.2 Vat Polymerization
56(1)
4.2.3 Inkjet Printing
57(1)
4.2.4 Extrusion and Direct-Ink-Writing Printing
57(1)
4.2.5 Direct Laser Writing Printing
58(2)
4.3 Materials for 3D Printing of Micro-/Nanomotors
60(1)
4.4 Shape Reconfiguration for Tunable Multifunctionality
61(2)
4.5 Types of Nanomotors and Their Function
63(3)
4.5.1 Helical Micro-/Nanoswimmers
63(1)
4.5.2 Tubular Micro-/Nanoswimmers
64(2)
4.5.3 Micro-/Nanomotors with Mixed Functions
66(1)
4.6 Propulsion Mechanism of Nanomotors
66(3)
4.6.1 Chemical and Biological Propulsion
66(1)
4.6.2 Magnetic Propulsion
67(2)
4.6.3 Ultrasonic Propulsion
69(1)
4.7 Therapeutic Applications
69(1)
4.8 Key Challenges and Future Outlook
70(3)
4.9 Concluding Remarks
73(6)
References
74(5)
5 Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics
79(30)
Tejal V. Patil
Ki-Taek Lim
5.1 Introduction
79(3)
5.2 Polymers
82(8)
5.2.1 Natural Polymers
83(4)
5.2.2 Synthetic Biopolymer
87(3)
5.3 Fabrication of Theranostic Nanorobots
90(7)
5.3.1 Magnetic Nanoparticle-Based Theranostics
90(1)
5.3.2 Micelles
91(1)
5.3.3 Dendrimers
92(2)
5.3.4 Nanogels
94(2)
5.3.5 Hybrid Conjugates
96(1)
5.4 Bioconjugation Process
97(1)
5.5 Application in Theranostics
98(3)
5.5.1 Cancer Diagnosis and Therapy
98(2)
5.5.2 Bacterial Infections and Wound Healing
100(1)
5.6 Conclusion
101(8)
References
101(8)
6 Magneto-Responsive Nanohybrids for Bioimaging
109(30)
S. T. Mhaske
D. A. Patil
S. U. Mestry
6.1 Introduction
109(2)
6.2 Nanohybrids
111(13)
6.2.1 Carbon-Carbon NHs
112(1)
6.2.2 Carbon-Metal NHs
113(1)
6.2.3 Metal-Metal NHs
114(1)
6.2.4 Organic Molecule-Coated NHs
114(7)
6.2.5 Virus Nanoparticles (VNPs)
121(3)
6.3 Characterizations of Nanohybrids
124(10)
6.3.1 ICP-MS and ICP-OES
124(4)
6.3.2 EDS
128(1)
6.3.3 SEM and TEM
129(2)
6.3.4 XRD
131(1)
6.3.5 Magnetic Properties of Nanohybrids
131(3)
6.4 Conclusion
134(5)
References
135(4)
7 Photothermal Nanomaterials for Wound Monitoring and Cancer Biomedicine
139(32)
Ashwini Shinde
Kavitha Illath
Sayan Deb Dutta
Ki-Taek Lim
Tuhin Subhra Santra
7.1 Introduction
139(3)
7.2 Photothermal Nanomaterials: Application for Wound Healing and Monitoring
142(12)
7.2.1 Photothermal and Photodynamic Therapy for Wound Healing
143(1)
7.2.2 Photothermal Nanomaterials for Skin Wound Healing
144(5)
7.2.3 Photothermal Nanomaterials for Bone and Cartilage Defects
149(5)
7.3 Photothermal Nanomaterials: Applications for Cancer Biomedicine
154(7)
1.3.1 Photothermal Therapy Using Metal Nanomaterials
154(2)
7.3.2 Photothermal Therapy Using Semiconductor Nanomaterials
156(2)
7.3.3 Photothermal Therapy Using Carbon-Based Nanomaterials
158(1)
7.3.4 Photothermal Therapy Using Conducting Polymers
159(2)
7.4 Limitations and Future Prospect
161(2)
7.5 Conclusion
163(8)
References
163(8)
8 Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management
171(30)
Dinesh K. Patel
Tejal V. Patil
Keya Ganguly
Sayan Deb Dutta
Rachmi Luthfikasari
Ki-Taek Lim
8.1 Introduction
171(2)
8.2 Classification of the Polymers
173(1)
8.2.1 Natural Polymers
173(1)
8.2.2 Synthetic Polymers
174(1)
8.3 Kinds of Nanomaterials
174(5)
8.3.1 0D and 1D Nanomaterials
174(4)
8.3.2 2D and 3D Nanomaterials
178(1)
8.4 Application of Polymer Nanohybrid-Based Smart Platforms
179(13)
8.4.1 Delivery of Active Molecules
179(6)
8.4.2 Wound Management
185(7)
8.5 Conclusion
192(9)
References
194(7)
9 Development of Efficient Strategies for Physical Stimuli-Responsive Programmable Nanotherapeutics
201(28)
Pravin P. Upare
Hyung Sub Shin
Jun Hak Lee
Byung Gyu Park
9.1 Introduction
201(2)
9.2 Stimuli-Responsive Nanomaterials
203(18)
9.2.1 Temperature-Responsive Nanomaterial
203(9)
9.2.2 Ultrasound-Responsive Materials
212(4)
9.2.3 Magnetic Field-Responsive Nanomaterials
216(5)
9.3 Concluding Remarks and Future Perspectives
221(8)
References
222(7)
10 The Flexible and Wearable Pressure Sensing Microsystems for Medical Diagnostics
229(34)
Hui Li
Ronghua Lan
Jing Chen
Lin Li
10.1 Introduction
229(1)
10.2 Materials
230(5)
10.2.1 Substrate Materials
232(1)
10.2.2 Active Materials
233(2)
10.3 Fundamentals of Pressure Sensors
235(6)
10.3.1 Sensing Mechanisms
235(3)
10.3.2 Key Parameters of Pressure Sensor
238(3)
10.4 Applications for Flexible Pressure Sensors
241(12)
10.4.1 Detecting Heart Rate or Pulse
243(2)
10.4.2 Detecting Pressure In Vivo
245(1)
10.4.3 Gait Monitoring
246(2)
10.4.4 Recognition of Sound Signal
248(2)
10.4.5 Breath Detection
250(2)
10.4.6 Tactile Perception
252(1)
10.5 Conclusions and Perspectives
253(10)
References
255(8)
11 Microfluidics and Lab-on-a-Chip for Biomedical Applications
263(22)
Dinesh K. Patel
Maria Mercedes Espinal
Tejal V. Patil
Keya Ganguly
Sayan Deb Dutta
Rachmi Luthfikasari
Ki-Taek Lim
11.1 Introduction
263(4)
11.2 Fabrication of Microfluidic System
267(1)
11.3 Significance of Nonlinear Process in Microfluidics
268(3)
11.4 Significance of Microfluidic Systems
271(2)
11.5 Biomedical Applications
273(6)
11.5.1 Organs-on-Chips (OoCs)
273(1)
11.5.2 Lung-on-a-Chip (LuoC)
274(2)
11.5.3 Brain-on-a-Chip (BoC)
276(1)
11.5.4 Joint/Muscle-on-a-Chip (JoC) and Human-on-a-Chip (HoC)
277(2)
11.6 Conclusion and Future Perspectives
279(6)
References
279(6)
12 Lab-on-a-Chip Devices for Medical Diagnosis II: Strategies for Pathogen Detection
285(14)
Rachmi Luthfikasari
Tejal V. Patil
Dinesh K. Patel
Keya Ganguly
Sayan Deb Dutta
Ki-Taek Lim
12.1 Introduction
285(1)
12.2 LoC Fabrication for Medical Diagnosis
286(5)
12.3 Pathogen Diagnosis
291(4)
12.4 Conclusion and Future Perspective
295(4)
References
296(3)
13 Nanodiagnostics: New Tools for Detection of Animal Pathogens
299(28)
Atef A. Hassan
Rasha M. H. Sayed-ElAhl
Ahmed M. El Hamaky
Mogda K. Mansour
Noha H. Oraby
Mahmoud H. Barakat
13.1 Introduction
299(1)
13.2 Traditional Methods for Detection of Animal Diseases
300(1)
13.3 Recent Approaches of Nanomaterial Applications in Detection of Animal Diseases
301(5)
13.3.1 Types of Nanodiagnostics
301(1)
13.3.2 Biomedical Applications of Nanodiagnostics
302(4)
13.4 Methods of Nanoparticle Functionalization for Disease Diagnosis
306(5)
13.4.1 Immuno-Based Methods
307(3)
13.4.2 Molecular-Based Methods
310(1)
13.5 Nano Biosensors Using Biomarkers
311(5)
13.5.1 Types of Biosensors
311(2)
13.5.2 Optical Biosensor
313(1)
13.5.3 Mass-Based Biosensor
313(1)
13.5.4 Calorimetric Biosensor
314(1)
13.5.5 Detection of Antibody Markers
314(1)
13.5.6 DNA Sensors
314(1)
13.5.7 Aptasensors
315(1)
13.5.8 Immunosensors
315(1)
13.5.9 Miscellaneous
316(1)
13.6 Conclusions and Future Prospective
316(11)
References
317(10)
14 Nano-Based Robotic Technologies for Plant Disease Diagnosis
327(34)
Farah K. Ahmed
Mousa A. Alghuthaymi
Kamel A. Abd-Elsalam
Mythili Ravichandran
Anu Kalia
14.1 Introduction
327(2)
14.2 Pathogen Detection Methods
329(11)
14.2.1 Morphological Tools
330(1)
14.2.2 Molecular Tools
330(1)
14.2.3 Omics Tools
330(1)
14.2.4 Nano-Based Diagnostics Tools
331(5)
14.2.5 Nanobiosensors
336(3)
14.2.6 Nanochips
339(1)
14.2.7 Nanopore-Based Detection
339(1)
14.3 Robotics Techniques for Plant Pathogens Detection
340(2)
14.4 Nanotools for Detection of Plant Pathogens
342(4)
14.4.1 Detection of Bacterial Pathogens
343(1)
14.4.2 Fungal Pathogens Detection
344(1)
14.4.3 Viral Pathogen Detection
345(1)
14.5 Diagnosis of the Plant Varieties and Other Forms
346(3)
14.6 Challenges
349(2)
14.7 Future Trends
351(1)
14.8 Conclusions
351(10)
References
352(9)
15 Nanodiagnostic Tools for Mycotoxins Detection
361(22)
Velaphi C. Thipe
Giovanna de Oliveira Asenjo Mendes
Victoria M. Alves
Thayna Souza
Rachel Fanelwa Ajayi
Ademar B. Lugao
Kattesh V. Katti
15.1 Introduction
362(1)
15.2 Conventional Diagnostics for Mycotoxins in Agriculture
363(2)
15.3 Nanosurveillance to Mitigate Mycotoxins
365(1)
15.4 Nanodiagnostics for Mycotoxins
366(1)
15.4.1 Sensors Based on Nanomaterials for Mycotoxin Surveillance
366(1)
15.4.2 Metallic Nanoparticles
367(1)
15.5 Smart Nanosensors
367(9)
15.5.1 Nanoparticles with Conductivity-Based Sensors
367(3)
15.5.2 Antibody-Coupled Nanomaterials
370(6)
15.6 Smart and Antifungal Packaging Nanosurveillance
376(1)
15.7 Concluding Remarks
377(6)
References
378(5)
16 CRISPR/Cas Systems: A New Biomedical and Agricultural Diagnostic Devices for Viral Diseases
383(28)
Aftab Ahmad
Sabin Aslam
Ahmad Munir
Farah K. Ahmed
Kamel A. Abd-Elsalam
16.1 Introduction
383(2)
16.2 CRISPR/Cas-Based Diagnostic Tools
385(26)
16.2.1 CRISPR: An Introduction
385(1)
16.2.2 Applications of CRISPR
385(1)
16.2.3 CRISPR/Cas
386(1)
16.2.4 CRISPR/Cas Mechanism
386(2)
16.2.5 CRISPR/Cas System
388(2)
16.2.6 CRISPR Methods and Techniques
390(2)
16.2.7 CRISPR/Cas Diagnostic Tools
392(13)
16.2.8 Challenges
405(2)
16.2.9 Conclusion and Future Outlook
407(1)
References
407(4)
17 DNA-Nanosensors for Environmental Monitoring of Heavy Metal Ions
411(22)
Heba Elbasiouny
Nahed S. Amer
Sherifa F. M. Dawoud
Amina M. G. Zedan
Fathy Elbehiry
17.1 Introduction
411(2)
17.2 Heavy Metals Pollution and Detection
413(1)
17.3 Nanobiosensors and Pollution Detection
414(4)
17.4 DNA Biosensor and DNA Nanobiosensors
418(3)
17.5 Nanosensors and DNA Nanosensors for Heavy Metals Detection
421(5)
17.6 Challenges
426(1)
17.7 Conclusion and Future Prospective
427(6)
References
428(5)
18 Smart Nanosensors for Pesticides and Heavy Metals Detection
433(15)
Nilesh Satpute
Kamlesh Shrivas
Khemchand Dewangan
18.1 Introduction
433(2)
18.2 Overview of Sensing Techniques
435(2)
18.2.1 The Need for Smart and Intelligent Nanosensors
435(1)
18.2.2 Smart Nanosensors and Nanobiosensors
436(1)
18.2.3 Operation Modes of Nanosensors
436(1)
18.3 Nanomaterials and their Types
437(2)
18.3.1 General Aspect of Nanomaterials
437(1)
18.3.2 Type of Nanomaterials
438(1)
18.4 Nanomaterial-Based Nanosensors/Nanobiosensors and Their Applications
439(8)
18.4.1 Nanosensors for Pesticides and Heavy Metal Detection
440(3)
18.4.2 Nanobiosensors for Pesticides and Heavy Metal Detection
443(4)
18.5 Conclusion and Future Prospective
447(1)
References 448(5)
Index 453
Prof. Dr. Ki-Taek Ph. D. is a Professor in the Department of Biosystems Engineering at Kangwon National University, Chuncheon and has been a faculty member since February 2015. Prior to his appointment, he served at the Institute for Nanoscience & Engineering, University of Arkansas, and Dental Research Institute of Seoul National University (SNU) as a postdoctoral fellow after receiving his Ph.D. in Biosystems & Biomaterials Science and Engineering from SNU.  His Ph.D. developed a novel stimuli-assisted platform system that can automatically culture the stem cells that exhibited the unique bioreactor system. His research interests center on improving the understanding, design, and performance of biophysical engineering approaches in molecular & cellular mechanics for controlled stem cells converging the bio/nano-technologies. The recent research in the Lim group integrates new bioreactor process, optical, and bio/nano-technology tools for application in biology and agricultural engineering. He has published over 180 refereed publications in high-impact factor journals, more than 20 book chapters, and holds over 30 patents. He pioneers the bio-convergence system in biosystems engineering approaches, aiming to enable multi-parametric studies with the power to reveal the workings of natural and engineered biological systems. Kamel A. Abd-Elsalam, Ph.D. is currently a Research Professor at the Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt. Dr. Kamels research interests include developing, improving, and deploying plant biosecurity diagnostic tools, understanding and exploiting fungal pathogen genomes, and developing eco-friendly hybrid nanomaterials for controlling toxicogenic fungi, plant diseases and Agroecosystems applications.In addition to this series, Nanobiotechnology for Plant Protection, he also serves as the Series Editor of the Elsevier bookseries Applications of Genome Modified Plants and Microbes in Food and Agriculture. He has also participated as an active member of the Elsevier Advisory Panel, giving feedback and suggestions for improvement of Elseviers products and services since 2020. He has published extensively in international peer reviewed journals including Fungal Biology and International Journal of Biological Macromolecules. He served as a Guest Editor for the Journal of Fungi, Plants, and Microorganisms, and as a Review Editor for Frontiers in Genomic Assay Technology and refereed for a number of reputed journals. In 2014, he was awarded the Federation of Arab Scientific Study Councils Prize for excellent scientific research in biotechnology (fungal genomics) (first ranking). In addition, according to Stanford University's worldwide database rating in 2021, Kamel A. Abd-Elsalam has been listed among the top 2% of the world's most influential scientists by Stanford University and Elsevier. Dr. Kamel earnedhis Ph.D. in Molecular Plant Pathology from Christian Alberchts University of Kiel (Germany) and Suez Canal University (Egypt), and in 2008, he was awarded a postdoctoral fellowship from the same institution. Dr. Kamel was a visiting associate professor at Mae Fah Luang University in Thailand, the Institute of Microbiology at TUM in Germany, the Laboratory of Phytopathology at Wageningen University in the Netherlands, and the Plant Protection Department at Sassari University in Italy and Moscow University in Russia.