Oxide materials are good candidates to replace Si devices which are facing performance limits since these materials display unique properties, either due to their composition design and/or doping technique.
The author introduces a means of selecting oxide materials according to their functions and explains metal/oxide interface physics. Material development is the key to matching oxide materials to specific practical applications.
In this book, the investigation and intentional control of metal/oxide interface structure and electrical properties with the data obtained using non-destructive methods such as x-ray photoelectron spectroscopy (XPS) and x-ray reflectometry (XRR) are discussed. Oxide materials should support the development of future functional devices with High-k, ferroelectric, magnetic and optical properties. Optical sensors as an application of metal Schottky contact and metal/oxide resistive random access memory structure are also explained.
This book examines the investigation and intentional control of metal/oxide interface structure and electrical properties with the data obtained using non-destructive methods such as x-ray photoelectron spectroscopy (XPS) and x-ray reflectometry (XRR).
General introduction.- Changes in Schottky barrier height behavior of Pt-Ru alloy contacts on single-crystal ZnO.- Surface passivation effect on Schottky contact formation of oxide semiconductors.- Bias-induced interfacial redox reaction in oxide-based resistive random access memory structure.- Switching control of oxide-based resistive random access memory by valence state control of oxide.- Combinatorial thin film synthesis for new nanoelectronics materials.- General summary.
Takahiro Nagata is a Group Leader at the Research Center for Functional Materials, National Institute for Materials Science (NIMS). He received his Ph.D. from Osaka Prefecture University in 2003. He joined NIMS as a Researcher at the Advanced Electric Materials Center in 2006, was appointed a Senior Researcher in the Semiconductor Device Materials Group at MANA in 2011, and has served in his current position since 2018. He was also a Visiting Scientist at the Department of Materials, University of California Santa Barbara in 2008-2009. Currently he is also a Visiting Professor at the Graduate School of Science and Technology, Meiji University.
His work focuses on developing combinatorial synthesis systems and high-throughput characterization tools for screening candidate materials in the context of materials informatics. Most recently, he has begun expanding his focus to nanoelectronics materials, including wide band-gap semiconductors.