Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optical Materials: Microstructuring Surfaces with Off-Electrode Plasma

  • Formāts: 229 pages
  • Izdošanas datums: 31-Mar-2017
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781315279923
  • Formāts - PDF+DRM
  • Cena: 106,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 229 pages
  • Izdošanas datums: 31-Mar-2017
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781315279923

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This reference book concentrates on microstructuring surfaces of optical materials with directed fluxes of off-electrode plasma generated by high-voltage gas discharge and developing methods and equipment related to this technique. It covers theoretical and experimental studies on the electrical and physical properties of high-voltage gas discharges used to generate plasma outside an electrode gap. A new class of methods and devices that makes it possible to implement a series of processes for fabricating diffraction microstructures on large format wafers is also discussed.

Recenzijas

"The content of the book is systemic and it corresponds with the needs of the audience for which it is intended. Representation, form, logicality and realizability of material submission are highly appreciated, and it appears an indisputable advantage of the book. A wide range of scientists and specialists in diffractive optics, nanophotonics, ion-plasma technologies, gas discharge physics, micro- and nanoelectronics would benefit from the results represented in the book." Alexander G. Poleshchuk, Russian Academy of Sciences

Foreword ix
Preface xi
Authors xvii
Chapter 1 Forming Directed Fluxes of Low-Temperature Plasma with High-Voltage Gas Discharge outside the Electrode Gap
1(22)
1.1 Overview of Devices Used for Generating Low-Temperature High-Voltage Gas-Discharge Plasma
1(4)
1.2 Features of Low-Temperature Off-Electrode Plasma Generated by High-Voltage Gas Discharge
5(5)
1.3 Design Changes to the High-Voltage Gas-Discharge Device
10(6)
1.4 New Devices for Generating Directed Fluxes of Low-Temperature Off-Electrode Plasma
16(5)
1.4.1 Multibeam Gas-Discharge Plasma Generator
17(2)
1.4.2 Gas-Discharge Plasma Focuser
19(2)
1.5
Chapter Summary
21(2)
Chapter 2 Methods for Quickly Measuring Surface Cleanliness
23(40)
2.1 Overview of Methods for Quickly Measuring Surface Cleanliness
24(5)
2.1.1 Method of Frustrated Multiple Internal Reflection Spectroscopy
24(1)
2.1.2 Method of Measuring the Volta Potential
25(1)
2.1.3 Methods for Evaluating Cleaning Efficiency Based on Wettability of the Substrate Surface
25(2)
2.1.4 Tribometric Method
27(2)
2.2 Design Changes to the Tribometer
29(7)
2.3 Operating Regimes and Parameters of the Tribometer
36(5)
2.4 Determining the Evaluation Criterion of a Technologically Clean Surface
41(3)
2.5 Tribometric Effect of the Substrate-Probe on the Structure of the Test Surface
44(2)
2.6 Measuring Surface Cleanliness with the Tribometric Method
46(1)
2.7 A Cleanliness Analyzer Based on Analysis of Drop Behavior
46(2)
2.8 Evaluating the Cleanliness of a Substrate from the Dynamic State of a Liquid Drop Deposited on Its Surface
48(7)
2.8.1 Description of the Experimental Method
49(1)
2.8.1.1 Sample Preparation
49(1)
2.8.2 Description of the Experimental Procedure
49(6)
2.9 Specifications of the Micro- and Nanoroughness Analyzer
55(3)
2.10 Design Changes to the Micro- and Nanoroughness Analyzer
58(4)
2.10.1 Requirements for the Automatic Dispenser
59(1)
2.10.2 Compatibility of the Pump's Control Module and the Analyzer's Software
60(1)
2.10.3 Overview of the Operation of the Modified Analyzer
61(1)
2.11
Chapter Summary
62(1)
Chapter 3 Increasing the Degree of Surface Cleanliness with Low-Temperature Off-Electrode Plasma
63(28)
3.1 Overview of Methods for Surface Cleaning
63(3)
3.1.1 Chemical Cleaning
64(1)
3.1.2 Laser Cleaning
65(1)
3.1.3 Low-Temperature Plasma Cleaning
65(1)
3.2 Formation Mechanisms of Surface Properties
66(3)
3.3 Molecular Structure Analysis of the Organic Contaminant
69(3)
3.4 Preparing Initial Samples with a Given Degree of Contamination
72(3)
3.5 Analysis of Plasma Particles Impinging on the Surface Being Treated
75(4)
3.6 Mechanism of Surface Cleaning with Directed Fluxes of Low-Temperature Off-Electrode Plasma
79(5)
3.6.1 Cleaning Mechanism
79(2)
3.6.2 Cleaning Model: Primary Expressions
81(3)
3.7 Experimental Investigation into the Relationship between the Degree of Surface Cleanliness and Physical Plasma Parameters
84(4)
3.8 Procedure for Final Surface Cleaning with Off-Electrode Plasma
88(1)
3.9
Chapter Summary
89(2)
Chapter 4 Adhesion in Metal-Dielectric Structures after Surface Bombardment with an Ion-Electron Flux
91(18)
4.1 Adhesion-Enhancing Mechanism
91(5)
4.2 Adhesion Model: Primary Expressions
96(5)
4.3 Experimental Investigation into the Effect of Ion-Electron Bombardment Parameters on Adhesion
101(5)
4.4 Depositing Highly Adhesive Masks
106(1)
4.5
Chapter Summary
107(2)
Chapter 5 Etching the Surface Microreliefs of Optical Materials in Off-Electrode Plasma
109(46)
5.1 Preparing Samples for an Experiment in Etching the Surface Microreliefs of Optical Materials in Off-Electrode Plasma
110(1)
5.2 Mechanisms of Plasma-Chemical and Ion-Chemical Surface Etching
111(4)
5.3 Etching Model: Primary Expressions; Algorithm and Software for Calculating the Etch Rate
115(9)
5.4 Experimental Investigation into the Relationship between the Etch Rate and Physical Plasma Parameters
124(8)
5.5 Relationship between the Etch Rate and Substrate Temperature
132(8)
5.5.1 Method for Determining the Temperature of a Surface at a Site Where a Low-Temperature Plasma Flux Is Incident on the Surface
133(5)
5.5.2 Experimental Investigation into the Relationship between the Etch Rate and Substrate Temperature
138(2)
5.6 Effect of Bulk Modification of Polymers in a Directed Low-Temperature Plasma Flux
140(6)
5.7 Etching Quality of Optical Materials
146(7)
5.8 Fabricating Microreliefs on the Surfaces of Optical Materials through Plasma-Chemical Etching in Off-Electrode Plasma
153(1)
5.9 Fabricating Microreliefs on the Surfaces of Optical Materials through Ion-Chemical Etching in Off-Electrode Plasma
154(1)
5.10
Chapter Summary
154(1)
Chapter 6 Generating a Catalytic Mask for the Microrelief of an Optical Element When an Al-Si Structure Is Irradiated by High-Voltage Gas-Discharge Particles
155(16)
6.1 Entrainment of Silicon Atoms by Vacancies Formed in an Aluminum Melt When Its Surface Is Exposed to High-Voltage Gas-Discharge Particles
156(3)
6.2 Analytical Description of Silicon Dissolution in an Aluminum Melt
159(7)
6.2.1 Conservative Difference Scheme for Diffusion Equations
163(1)
6.2.2 Difference Solution to the Mixed Problem
164(1)
6.2.3 Analysis of Numerical Results
165(1)
6.3 Analysis of Experimental Data
166(2)
6.4 Fabricating a Microrelief Based on a Catalytic Mask Formed in Off-Electrode Plasma
168(1)
6.5
Chapter Summary
169(2)
Conclusion 171(2)
Appendix A Statistical Analysis of Experimental Results 173(18)
References 191(18)
Index 209
VSEVOLOD KOLPAKOV is a doctor of physics and mathematics and a professor in the Department of Electronic Engineering and Technology at the Samara National Research University (Samara State Aerospace University), Samara, Russia. He is an expert in ionplasma technology and quality management, the author and co-author of 120 scientific publications, including 3 monographs, 2 textbooks, and 40 articles, and a co-inventor of 9 patents.



NIKOLAY KAZANSKIY is head and acting director of the Diffractive Optics Laboratory at the Image Processing Systems Institute and a professor in the Technical Cybernetics Department at the Samara National Research University (Samara State Aerospace University), Samara, Russia. He is a member of SPIE and IAPR, the author and co-author of 240 articles and 10 monographs, and a co-inventor of 46 patents in diffractive optics, mathematical modelling, and nanophotonics.