Atjaunināt sīkdatņu piekrišanu

Origin of Power Converters: Decoding, Synthesizing, and Modeling [Hardback]

  • Formāts: Hardback, 416 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Izdošanas datums: 17-Apr-2020
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119632986
  • ISBN-13: 9781119632986
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 149,58 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 416 pages, height x width x depth: 10x10x10 mm, weight: 454 g
  • Izdošanas datums: 17-Apr-2020
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119632986
  • ISBN-13: 9781119632986
Citas grāmatas par šo tēmu:
"This book identifies the original converter before moving on to develop and model power converters systematically based on decoding and synthesizing approaches. The first part of the book presents an introduction, discovery of the original converter, and some fundamentals related to power converter synthesis and evolution. It also provides an illustration of converter synthesis approaches, synthesis of multi-stage/multi-level converters, extension of hard--witching converters to soft-switching ones, anddetermination of switch-voltage stresses in the converters. In the second part of the book, the authors review conventional two-port network theory and state-space averaged (SSA) modeling approach, from which systematic modeling approaches based on the graft switch technique. The converter layer scheme and some fundamental circuit theories are also presented. A power converter is an electrical or electro-mechanical device for converting electrical energy. This could be as simple as a transformer to change the voltage of AC power, but also includes far more complex systems. The term can also refer to a class of electrical machinery that is used to convert one frequency of alternating current into another frequency. Power conversion systems often incorporate redundancy and voltage regulation. One way of classifying power conversion systems is according to whether the input and output are alternating current (AC) or direct current (DC)"--

A comprehensive guide to approaches to decoding, synthesizing and modeling pulse width modulation (PWM) converters

Origin of Power Converters explores the original converter and provides a systematic examination of the development and modeling of power converters based on decoding and synthesizing approaches. The authors—noted experts on the topic—present an introduction to the origins of the converter and detail the fundamentals related to power the converter’s evolution. They cover a range of converter synthesis approaches, synthesis of multi-stage/multi-level converters, extension of hard-switching converters to soft-switching ones, and determination of switch-voltage stresses in the converters.

In later chapters, this comprehensive resource reviews conventional two-port network theory and the state-space averaged (SSA) modeling approach, from which systematic modeling approaches are based on the graft switch technique. In addition, the book reviews the converter layer scheme and some fundamental circuit theories. This important book:

•    Contains a review of several typical transfer codes, such as step-down, step-up, step-up&-down, and ± step-up&-down

•    Describes the syntheses of pulse width modulation (PWM) converters such as voltage-fed z-source, current-fed z-source, quasi z-source, switched capacitor, and switched inductor converters

•    Presents two application examples based on previously proposed modeling approaches

Written for academic researchers, graduate students, and seniors in power electronics, Origin of Power Converters provides a comprehensive understanding of the evolution of the converter and its applications.

Preface xv
Acknowledgments xvii
About the Authors xviii
Part I Decoding and Synthesizing
1(298)
1 Introduction
3(28)
1.1 Power Processing Systems
4(3)
1.2 Non-PWM Converters Versus PWM Converters
7(13)
1.2.1 Non-PWM Converters
7(2)
1.2.2 PWM Power Converters
9(1)
1.3 Weil-Known PWM Converters
10(7)
1.4 Approaches to Converter Development
17(8)
1.5 Evolution
25(1)
1.6 About the Text
26(5)
1.6.1 Part I: Decoding and Synthesizing
26(2)
1.6.2 Part II: Modeling and Applications
28(1)
Further Reading
28(3)
2 Discovery of Original Converter
31(12)
2.1 Creation of Original Converter
31(3)
2.1.1 Source-Load Approach
32(1)
2.1.2 Proton-Neutron-Meson Analogy
32(1)
2.1.3 Resonance Approach
33(1)
2.2 Fundamental PWM Converters
34(6)
2.2.1 Voltage Transfer Ratios
35(1)
2.2.2 CCM Operation
36(2)
2.2.3 DCM Operation
38(1)
2.2.4 Inverse Operation
39(1)
2.3 Duality
40(3)
Further Reading
41(2)
3 Fundamentals
43(34)
3.1 DC Voltage and Current Offsetting
43(6)
3.1.1 DC Voltage Offsetting
44(3)
3.1.2 DC Current Offsetting
47(2)
3.2 Capacitor and Inductor Splitting
49(2)
3.3 DC-Voltage Blocking and Pulsating-Voltage Filtering
51(4)
3.4 Magnetic Coupling
55(3)
3.5 DC Transformer
58(4)
3.6 Switch Grafting
62(5)
3.7 Diode Grafting
67(5)
3.8 Layer Scheme
72(5)
Further Reading
74(3)
4 Decoding Process
77(18)
4.1 Transfer Ratios (Codes)
77(5)
4.2 Transfer Code Configurations
82(4)
4.2.1 Cascade Configuration
82(1)
4.2.2 Feedback Configuration
82(1)
4.2.3 Feedforward Configuration
83(2)
4.2.4 Parallel Configuration
85(1)
4.3 Decoding Approaches
86(5)
4.3.1 Factorization
86(2)
4.3.2 Long Division
88(1)
4.3.3 Cross Multiplication
89(2)
4.4 Decoding of Transfer Codes with Multivariables
91(2)
4.5 Decoding with Component-Interconnected Expression
93(2)
Further Reading
94(1)
5 Synthesizing Process with Graft Scheme
95(38)
5.1 Cell Approaches
95(6)
5.1.1 P-Cell and N-Cell
96(1)
5.1.2 Tee Canonical Cell and Pi Canonical Cell
97(1)
5.1.3 Switched-Capacitor Cell and Switched-Inductor Cell
98(2)
5.1.4 Inductor-Capacitor Component Cells
100(1)
5.2 Converter Grafting Scheme
101(9)
5.2.1 Synchronous Switch Operation
101(2)
5.2.2 Grafting Active Switches
103(5)
5.2.3 Grafting Passive Switches
108(2)
5.3 Illustration of Grafting Converters
110(23)
5.3.1 Grafting the Weil-Known PWM Converters
110(1)
5.3.1.1 Graft Boost on Buck
111(1)
5.3.1.2 Graft Buck on Boost
112(2)
5.3.1.3 Graft Buck on Buck-Boost
114(2)
5.3.1.4 Graft Boost on Boost-Buck
116(3)
5.3.1.5 Buck in Parallel with Buck-Boost
119(1)
5.3.1.6 Grafting Buck on Buck to Achieve High Step-Down Voltage Conversion
119(1)
5.3.1.7 Grafting Boost on Boost to Achieve High Step-up Voltage Conversion
120(1)
5.3.1.8 Grafting Boost (CCM) on Buck (DCM)
121(2)
5.3.1.9 Cascode Complementary Zeta with Buck
123(1)
5.3.2 Grafting Various Types of Converters
124(1)
5.3.2.1 Grafting Half-Bridge Resonant Inverter on Dither Boost Converter
124(1)
5.3.2.2 Grafting Half-Bridge Resonant Inverter on Bidirectional Flyback Converter
124(1)
5.3.2.3 Grafting Class-E Converter on Boost Converter
125(2)
5.3.3 Integrating Converters with Active and Passive Grafted Switches
127(1)
5.3.3.1 Grafting Buck on Boost with Grafted Diode
128(1)
5.3.3.2 Grafting Half-Bridge Inverter on Interleaved Boost Converters in DCM
128(2)
5.3.3.3 Grafting N-Converters with TGS
130(1)
5.3.3.4 Grafting N-Converters with nGS
130(2)
Further Reading
132(1)
6 Synthesizing Process with Layer Scheme
133(20)
6.1 Converter Layering Scheme
133(2)
6.2 Illustration of Layering Converters
135(11)
6.2.1 Buck Family
135(3)
6.2.2 Boost Family
138(4)
6.2.3 Other Converter Examples
142(4)
6.3 Discussion
146(7)
6.3.1 Deduction from Cuk to Buck-Boost
146(2)
6.3.2 Deduction from Sepic to Buck-Boost
148(1)
6.3.3 Deduction from Zeta to Buck-Boost
149(1)
6.3.4 Deduction from Sepic to Zeta
150(1)
Further Reading
151(2)
7 Converter Derivation with the Fundamentals
153(46)
7.1 Derivation of Buck Converter
153(1)
7.1.1 Synthesizing with Buck-Boost Converter
154(1)
7.1.2 Synthesizing with Cuk Converter
154(1)
7.2 Derivation of z-Source Converters
154(12)
7.2.1 Voltage-Fed z-Source Converters
155(2)
7.2.1.1 Synthesizing with Sepic Converter
157(3)
7.2.1.2 Synthesizing with Zeta Converter
160(1)
7.2.2 Current-Fed z-Source Converters
161(1)
7.2.2.1 Synthesizing with SEPIC Converter
162(1)
7.2.2.2 Synthesizing with Zeta Converter
162(1)
7.2.3 Quasi-z-Source Converter
162(2)
7.2.3.1 Synthesizing with Sepic Converter
164(1)
7.2.3.2 Synthesizing with Zeta Converter
165(1)
7.3 Derivation of Converters with Switched Inductor or Switched Capacitor
166(19)
7.3.1 Switched-Inductor Converters
167(1)
7.3.1.1 High Step-Down Converter with Transfer Code D/(2 --- D)
167(6)
7.3.1.2 High Step-Down Converter with Transfer Code D/(2(1 - D))
173(5)
7.3.2 Switched-Capacitor Converters
178(1)
7.3.2.1 High Step-Up Converter with Transfer Code (1 + D)/(1-D)
178(3)
7.3.2.2 High Step-Up Converter with Transfer Code D/(1 - D)
181(3)
7.3.2.3 High Step-Up Converter with Transfer Code D/(1-2D)
184(1)
7.4 Syntheses of Desired Transfer Codes
185(14)
7.4.1 Synthesis of Transfer Code: D2/(D2 - 3D + 2)
186(1)
7.4.1.1 Synthesizing with Buck-Boost Converter
187(1)
7.4.1.2 Synthesizing with Zeta Converter
188(1)
7.4.1.3 Synthesizing with Cuk Converter
189(2)
7.4.2 Synthesizing Converters with the Fundamentals
191(1)
7.4.2.1 DC Voltage and DC Current Offsetting
191(1)
7.4.2.2 Inductor and Capacitor Splitting
192(1)
7.4.2.3 DC Voltage Blocking and Filtering
192(1)
7.4.2.4 Magnetic Coupling
193(1)
7.4.2.5 DC Transformer
194(1)
7.4.2.6 Switch and Diode Grafting
195(1)
7.4.2.7 Layer Technique
195(3)
Further Reading
198(1)
8 Synthesis of Multistage and Multilevel Converters
199(16)
8.1 Review of the Original Converter and Its Variations of Transfer Code
199(2)
8.2 Syntheses of Single-Phase Converters
201(2)
8.3 Syntheses of Three-Phase Converters
203(4)
8.4 Syntheses of Multilevel Converters
207(3)
8.5 L-C Networks
210(5)
Further Reading
212(3)
9 Synthesis of Soft-Switching PWM Converters
215(40)
9.1 Soft-Switching Cells
215(15)
9.1.1 Passive Lossless Soft-Switching Cells
216(1)
9.1.1.1 Near-Zero-Current Switching Mechanism
216(2)
9.1.1.2 Near-Zero-Voltage Switching Mechanism
218(2)
9.1.2 Active Lossless Soft-Switching Cells
220(2)
9.1.2.1 Zero-Voltage Switching Mechanism
222(4)
9.1.2.2 Zero-Current Switching Mechanism
226(4)
9.2 Synthesis of Soft-Switching PWM Converters with Graft Scheme
230(10)
9.2.1 Generation of Passive Soft-Switching PWM Converters
230(4)
9.2.2 Generation of Active Soft-Switching PWM Converters
234(6)
9.3 Synthesis of Soft-Switching PWM Converters with Layer Scheme
240(7)
9.3.1 Generation of Passive Soft-Switching PWM Converters
240(5)
9.3.2 Generation of Active Soft-Switching PWM Converters
245(2)
9.4 Discussion
247(8)
Further Reading
252(3)
10 Determination of Switch-Voltage Stresses
255(16)
10.1 Switch-Voltage Stress of the Original Converter
255(2)
10.2 Switch-Voltage Stresses of the Fundamental Converters
257(6)
10.2.1 The Six Weil-Known PWM Converters
257(1)
10.2.1.1 Boost Converter
257(1)
10.2.1.2 Buck-Boost Converter
258(1)
10.2.1.3 Cuk, Sepic, and Zeta Converters
259(1)
10.2.2 z-Source Converters
260(1)
10.2.2.1 Voltage-Fed z-Source Converter
260(1)
10.2.2.2 Current-Fed z-Source Converter
261(1)
10.2.2.3 Quasi-z-Source Converter
262(1)
10.3 Switch-Voltage Stresses of Non-Fundamental Converters
263(8)
10.3.1 High Step-Down Switched-Inductor Converter
263(1)
10.3.2 High Step-Down/Step-Up Switched-Inductor Converter
264(1)
10.3.3 Compound Step-Down/Step-Up Switched-Capacitor Converter
265(2)
10.3.4 High Step-Down Converter with Transfer Ratio of D2
267(1)
10.3.5 High Step-Up Converter with Transfer Ratio of 1/(1 - D)2
268(2)
Further Reading
270(1)
11 Discussion and Conclusion
271(28)
11.1 Will Identical Transfer Code Yield the Same Converter Topology?
271(3)
11.2 Topological Duality Versus Circuital Duality
274(3)
11.3 Graft and Layer Schemes for Synthesizing New Fundamental Converters
277(12)
11.3.1 Synthesis of Buck-Boost Converter
278(1)
11.3.2 Synthesis of Boost-Buck (Cuk) Converter
279(1)
11.3.3 Synthesis of Buck-Boost-Buck (Zeta) Converter
280(2)
11.3.4 Synthesis of Boost-Buck-Boost (Sepic) Converter
282(2)
11.3.5 Synthesis of Buck-Family Converters with Layer Scheme
284(2)
11.3.6 Synthesis of Boost-Family Converters with Layer Scheme
286(3)
11.4 Analogy of Power Converters to DNA
289(6)
11.4.1 Replication
291(1)
11.4.2 Mutation
291(4)
11.5 Conclusions
295(4)
Further Reading
296(3)
Part II Modeling and Application
299(96)
12 Modeling of PWM DC/DC Converters
301(28)
12.1 Generic Modeling of the Original Converter
302(1)
12.2 Series-Shunt and Shunt-Series Pairs
303(5)
12.3 Two-Port Network
308(7)
12.4 Small-Signal Modeling of the Converters Based on Layer Scheme
315(8)
12.5 Quasi-Resonant Converters
323(6)
Further Reading
326(3)
13 Modeling of PWM DC/DC Converters Using the Graft Scheme
329(22)
13.1 Cascade Family
330(2)
13.2 Small-Signal Models of Buck-Boost and Cuk Converters Operated in CCM
332(8)
13.2.1 Buck-Boost Converter
336(2)
13.2.2 Boost-Buck Converter
338(2)
13.3 Small-Signal Models of Zeta and Sepic Operated in CCM
340(11)
13.3.1 Zeta Converter
344(2)
13.3.2 Sepic Converter
346(3)
Further Reading
349(2)
14 Modeling of Isolated Single-Stage Converters with High Power Factor and Fast Regulation
351(16)
14.1 Generation of Single-Stage Converters with High Power Factor and Fast Regulation
352(3)
14.2 Small-Signal Models of General Converter Forms Operated in CCM/DCM
355(6)
14.3 An Illustration Example
361(6)
Further Reading
365(2)
15 Analysis and Design of an Isolated Single-Stage Converter Achieving Power Factor Correction and Fast Regulation
367(28)
15.1 Derivation of the Single-Stage Converter
368(1)
15.1.1 Selection of Individual Semi-Stages
369(1)
15.1.2 Derivation of the Discussed Isolated Single-Stage Converter
369(1)
15.2 Analysis of the Isolated Single-Stage Converter Operated in DCM + DCM
369(4)
15.2.1 Buck-Boost Power Factor Corrector
370(2)
15.2.2 Flyback Regulator
372(1)
15.3 Design of a Peak Current Mode Controller for the ISSC
373(4)
15.4 Practical Consideration and Design Procedure
377(3)
15.4.1 Component Stress
377(1)
15.4.2 Snubber Circuit
378(1)
15.4.3 Design Procedure
379(1)
15.5 Hardware Measurements
380(2)
15.6 Design of an H00 Robust Controller for the ISSC
382(13)
15.6.1 H∞ Control
382(4)
15.6.2 An Illustration Example of Robust Control and Hardware Measurements
386(6)
Further Reading
392(3)
Index 395
TSAI-FU WU, PHD, is a Distinguished Professor in the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan. Dr. Wu has been an Associate Editor for the IEEE Transactions on Power Electronics since 2000.

YU-KAI CHEN, PHD, is a Professor in the Innovative Design and Energy Application Laboratory at National Formosa University, Yunlin, Taiwan.