Atjaunināt sīkdatņu piekrišanu

E-grāmata: Output Feedback Reinforcement Learning Control for Linear Systems

  • Formāts: EPUB+DRM
  • Sērija : Control Engineering
  • Izdošanas datums: 29-Nov-2022
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031158582
  • Formāts - EPUB+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Control Engineering
  • Izdošanas datums: 29-Nov-2022
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031158582

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL.  New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees.  A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays.  Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints.

Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.
Preface.- Introduction to Optimal Control and Reinforcement Learning.- Model-Free Design of Linear Quadratic Regulator.- Model-Free H-infinity Disturbance Rejection and Linear Quadratic Zero-Sum Games.- Model-Free Stabilization in the Presence of Actuator Saturation.- Model-Free Control of Time Delay Systems.- Model-Free Optimal Tracking Control and Multi-Agent Synchronization.- Index.