Atjaunināt sīkdatņu piekrišanu

Output Feedback Reinforcement Learning Control for Linear Systems 2023 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 294 pages, height x width: 235x155 mm, weight: 480 g, XVI, 294 p., 1 Paperback / softback
  • Sērija : Control Engineering
  • Izdošanas datums: 30-Nov-2023
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3031158601
  • ISBN-13: 9783031158605
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 294 pages, height x width: 235x155 mm, weight: 480 g, XVI, 294 p., 1 Paperback / softback
  • Sērija : Control Engineering
  • Izdošanas datums: 30-Nov-2023
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3031158601
  • ISBN-13: 9783031158605
Citas grāmatas par šo tēmu:
This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL.  New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees.  A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays.  Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints.

Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.
Preface.- Introduction to Optimal Control and Reinforcement Learning.- Model-Free Design of Linear Quadratic Regulator.- Model-Free H-infinity Disturbance Rejection and Linear Quadratic Zero-Sum Games.- Model-Free Stabilization in the Presence of Actuator Saturation.- Model-Free Control of Time Delay Systems.- Model-Free Optimal Tracking Control and Multi-Agent Synchronization.- Index.