Atjaunināt sīkdatņu piekrišanu

Predictive Intelligence in Medicine: 5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings 1st ed. 2022 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 213 pages, height x width: 235x155 mm, weight: 355 g, 62 Illustrations, color; 8 Illustrations, black and white; XI, 213 p. 70 illus., 62 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 13564
  • Izdošanas datums: 21-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031169182
  • ISBN-13: 9783031169182
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 213 pages, height x width: 235x155 mm, weight: 355 g, 62 Illustrations, color; 8 Illustrations, black and white; XI, 213 p. 70 illus., 62 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 13564
  • Izdošanas datums: 21-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031169182
  • ISBN-13: 9783031169182
Citas grāmatas par šo tēmu:
This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.

The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.

Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning