Atjaunināt sīkdatņu piekrišanu

E-grāmata: Predictive Intelligence in Medicine: 5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13564
  • Izdošanas datums: 20-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031169199
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13564
  • Izdošanas datums: 20-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031169199

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.

The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.

Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning