Atjaunināt sīkdatņu piekrišanu

E-grāmata: Probability Theory, An Analytic View

(Massachusetts Institute of Technology)
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Nov-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009549028
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Nov-2024
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009549028

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.

This text provides a rigorous, yet entertaining, introduction to modern probability theory and the analytic ideas and tools on which it relies. The third edition includes a new treatment of the Gaussian isoperimetric inequality and numerous improvements and clarifications. With more than 750 exercises, it is ideal for first-year graduate students.

Papildus informācija

A rigorous, yet entertaining, account of the analytic foundations on which Kolmogorov built the theory of probability.
Notation;
1. Sums of independent random variables;
2. The central limit
theorem;
3. Infinitely divisible laws;
4. Lévy processes;
5. Conditioning and
martingales;
6. Some extensions and applications of martingale theory;
7.
Continuous parameter martingales;
8. Gaussian measures on a Banach space;
9.
Convergence of measures on a Polish space;
10. Wiener measure and partial
differential equations;
11. Some classical potential theory; References;
Index.
Daniel W. Stroock is Simons Professor Emeritus of Mathematics at the Massachusetts Institute of Technology. He has published numerous articles and books, most recently 'Elements of Stochastic Calculus and Analysis' (2018) and 'Gaussian Measures in Finite and Infinite Dimensions' (2023).