Atjaunināt sīkdatņu piekrišanu

Proton Conductors: Solids, Membranes and Gels - Materials and Devices [Mīkstie vāki]

Edited by (Centre National de la Recherche Scientifique (CNRS), Paris)
  • Formāts: Paperback / softback, 616 pages, height x width x depth: 230x153x36 mm, weight: 916 g, 16 Tables, unspecified; 3 Halftones, unspecified; 124 Line drawings, unspecified
  • Sērija : Chemistry of Solid State Materials
  • Izdošanas datums: 11-Sep-2008
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521078903
  • ISBN-13: 9780521078900
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 137,94 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 616 pages, height x width x depth: 230x153x36 mm, weight: 916 g, 16 Tables, unspecified; 3 Halftones, unspecified; 124 Line drawings, unspecified
  • Sērija : Chemistry of Solid State Materials
  • Izdošanas datums: 11-Sep-2008
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521078903
  • ISBN-13: 9780521078900
Citas grāmatas par šo tēmu:
The present book covers different aspects of proton conduction: the first part describes chemical and physical parameters necessary for fast proton conduction and proposes a classification of different kinds of proton conductors. Comparison is made with other hydrogen containing materials (metals, graphites). The importance of partial water pressure, the role of defects and surface phenomena are discussed. The second part treats the chemistry, structures and electrical properties of typical materials from hydrogen bronzes to polymers via ice, hydroxides, acid sulphates, layer hydrates, clays, gels and porous or fractal media. The third part discusses the methods concerning the proton dynamics from local to macroscopic scale. The fourth part deals with conductivity mechanisms and the last one presents typical applications: electrochemical systems for production or energy storage and microionic devices.

This book gives a comprehensive review of proton conductors, including theory, techniques, the materials themselves and applications.

Papildus informācija

This book gives a comprehensive review of proton conductors, including theory, techniques, the materials themselves and applications.
List of contributors
xvii
Preface xxi
Symbols xxviii
I. Hydrogen Bond and Protonic Species
1(100)
The hydrogen bond and chemical parameters favouring proton mobility in solids
1(17)
A. Potier
From ionic to protonic conduction
1(1)
The lone proton migration mechanism (translocation)
2(4)
Proton-carrying mechanisms (the vehicle mechanism or V-mechanism)
6(1)
Structural effects
7(3)
Chemical `equilibrium' and the `ionic defect': towards a chemical classification
10(5)
References
15(3)
Protonic species and their structures
18(20)
D.J. Jones
J. Roziere
General introduction
18(1)
Proton hydrates
19(5)
Nitrogenous protonic species
24(8)
References
32(6)
Proton conductors: classification and conductivity
38(23)
Ph. Colomban
A. Novak
Introduction
38(4)
Classification of protonic conductors
42(14)
References
56(5)
Defects, non-stoichiometry and phase transitions
61(18)
Ph. Colomban
A. Novak
Introduction
61(1)
Ionic mobility and conductivity
62(2)
Electronic conduction and non-stoichiometry
64(5)
Water vapour pressure
69(6)
References
75(4)
Structural studies of proton conductors
79(11)
J.O. Thomas
The structural situation
79(1)
Proton jumps
80(1)
Proton jumps and molecular reorientations
81(4)
Short hydrogen bonds
85(1)
Ordered and disordered networks
86(3)
References
89(1)
Hydrogen in metals: structure, diffusion and tunnelling
90(11)
I. Svare
Introduction
90(1)
Hydrogen absorption in metals
90(3)
Hydrogen diffusion and tunnelling
93(2)
A model of tunnelling
95(3)
Other theories of tunnelling
98(1)
References
99(2)
II. Materials: Preparation, Structures and Properties
101(89)
Structure and characterization of hydrogen insertion compounds of metal oxides
101(21)
P.G. Dickens
A.M. Chippindale
Introduction
101(3)
Preparations
104(1)
Thermodynamic aspects of hydrogen insertion
105(4)
Location of hydrogen in HxMOn
109(9)
Conclusions
118(1)
References
119(3)
High temperature proton conductors based on perovskitetype oxides
122(16)
H. Iwahara
Introduction
122(1)
Proton conducting solids at high temperature
122(1)
Preparation and properties of ceramics
123(1)
Verification of protonic conduction
124(4)
Conduction properties
128(1)
Proton formation in oxides
129(4)
Migration of protons
133(3)
References
136(2)
Highly ionic hydroxides: unexpected proton conductivity in Mg(OH) 2 and homologues
138(20)
F.Freund
Introduction
138(1)
Non-hydrogen bonded systems
138(2)
Potential energy curve of the O-H oscillator
140(4)
Direct current proton conductivity measurements
144(3)
Proton conductivity results
147(4)
Proton carrier density on the conduction band
151(4)
Summary
155(1)
References
156(2)
Ice
158(7)
I.A. Ryzhkin
Introduction
158(1)
Structure of ordinary ice
158(1)
Defects and conduction mechanism
159(4)
Electrical properties of doped ice
163(1)
Conclusion
163(1)
References
164(1)
Anhydrous materials: oxonium perchlorate, acid phosphates, arsenates, sulphates and selenates
165(18)
Ph. Colomban
A. Novak
Oxonium perchlorate
165(4)
Dihydrogen phosphates and arsenates, MH2XO4
169(1)
Hydrogen sulphates and selenates
170(9)
References
179(4)
Hydrogen behaviour in graphite-nitric acid intercalation compounds
183(7)
H. Fuzellier
J. Conard
Graphite intercalation compounds
183(1)
Crystal structure of GNCs
184(1)
H mobility
185(3)
Conclusion
188(1)
References
188(2)
A. Inorganic ion exchangers
190(48)
Proton-containing β- and β'' -alumina structure type compounds
190(20)
H. Ikawa
Synthesis
190(1)
Crystal structure and structural characteristics
191(5)
Thermal transformations
196(5)
Conductivity
201(3)
Applications
204(1)
References
205(5)
Proton conduction in zeolites
210(14)
E. Krogh Andersen
I.G. Krogh Andersen
E. Skou
Introduction
210(2)
Materials and materials modification
212(1)
Protonic conduction in alkali metal zeolites
213(3)
Protonic conduction in ammonium zeolites and in hydrogen zeolites
216(4)
protonic conduction in tin zeolites
220(2)
Summary
222(1)
References
223(1)
Proton containing NASICON phases
224(14)
A. Clearfield
Triphosphate phases
224(7)
Silicophosphate phases
231(3)
Structural considerations
234(1)
Conclusions
235(1)
References
235(3)
B. Layer hydrates
238(91)
Phosphates and phosphonates of tetravalent metals as protonic conductors
238(16)
G. Alberti
M. Casciola
Introduction
238(1)
Layered α-zirconium phosphate and its modified and intercalated phases
239(9)
Other phosphates and phosphonates of tetravalent metals
248(3)
Applications and future perspectives
251(1)
References
251(3)
Hydrogen uranyl phosphate, H3OUO2PO4.3H2O (HUP), and related materials
254(18)
Ph. Colomban
A. Novak
Introduction
254(1)
Preparation and chemistry
255(3)
Thermal and chemical stability
258(3)
Structure and phase transitions
261(3)
Electrical properties
264(3)
Related materials
267(2)
References
269(3)
From crystalline to amorphous (particle) hydrates: inorganic polymers, glasses, clays, gels and porous media
272(22)
Ph. Colomban
A. Novak
Hydrous heteropolytungstic (molybdic, silicic) acids
275(3)
Water layers in 2D frameworks
278(4)
Hydrous oxides
282(7)
References
289(5)
Perfluorinated membranes
294(17)
G. Pourcelly
C. Gavach
Historical background and development
294(1)
Synthesis of perfluorinated membranes
295(1)
Structure of perfluorinated membranes
296(4)
Proton transport in perfluorosulphonic membranes
300(7)
Perfluorinated membranes and related materials
307(1)
Conclusions
308(1)
References
308(3)
Mixed inorganic-organic systems: the acid/polymer blends
311(18)
J.C. Lassegues
Introduction
311(3)
Preparation
314(1)
Classification of the acid/polymer blends
314(9)
Temperature dependence of the conductivity
323(2)
Conclusion
325(1)
References
326(3)
III. Proton Dynamics and Charge Transport
329(115)
Incoherent neutron scattering studies of proton conductors: from the anhydrous solid state to aqueous solutions
329(21)
J.C. Lassegues
Introduction
329(5)
Anhydrous solid protonic conductors
334(4)
Hydrated solid protonic conductors
338(4)
Acidic aqueous solutions
342(3)
Conclusion
345(1)
References
346(4)
NMR studies of local motions in fast protonic conductors
350(17)
S.V. Bhat
Introduction
350(1)
NMR as a probe of structure and dynamics
351(2)
High resolution NMR study of ammonium ferrocyanide hydrate (AFC)
353(6)
High pressure NMR studies of AFC
359(1)
Relaxation time studies of AFC
360(1)
Effect of low dimensionality
361(1)
Conclusion
362(1)
References
363(4)
Vibrational spectroscopy of proton conductors
367(10)
Ph. Colomban
A. Novak
Introduction
367(1)
Hydrogen bonding
368(1)
Relationship between OH stretching frequencies and O...O distances
369(1)
Isotopic dilution method
369(1)
Structure determination
370(1)
Disordered crystals
371(3)
Potential barrier and conductivity
374(1)
Phase transitions
375(1)
References
375(2)
Raman spectroscopic studies of proton conductors
377(12)
R. Frech
Introduction
377(1)
The Raman effect
377(2)
Applications of Raman spectroscopy to the study of proton conductors
379(8)
References
387(2)
Frequency dependent conductivity, microwave dielectric relaxation and proton dynamics
389(20)
Ph. Colomban
J.C. Badot
Definitions
389(3)
Dielectric relaxation
392(5)
Relaxation assignment in protonic conductors
397(5)
Phase transitions, ferroelectricity and collective motions
402(4)
References
406(3)
Measuring the true proton conductivity
409(9)
K.-D. Kreuer
The sample
409(1)
H+ -conductivity measurement by a.c.-impedance spectroscopy
410(2)
1H+ -diffusion coefficient measurement by PFG-NMR
412(4)
References
416(2)
D.C. techniques and a.c./d.c. combination techniques
418(14)
E. Skou
I.G. Krogh Andersen
E. Krogh Andersen
Introduction
418(1)
E.m.f. methods
419(1)
D.C. methods
420(5)
A.C./d.c. combination techniques
425(5)
Conclusion
430(1)
References
430(2)
NMR in gels and porous media
432(12)
J.P. Korb
F. Devreux
Introduction
432(1)
Nuclear relaxation of solvent imbibed in porous materials
432(5)
Pulsed field gradient experiments
437(2)
Nuclear relaxation in fractal aerogels
439(3)
NMR imaging and microscopy
442(1)
Conclusion
442(1)
References
443(1)
IV. Proton Diffusion Mechanisms
444(43)
Mobility in hydrogen-containing oxide bronzes: the atomic-level deatil
444(13)
R.C.T. Slade
Applicable techniques
444(2)
Results of atomic-level investigations
446(9)
References
455(2)
Conductivity mechanisms and models in anhydrous protonic conductors
457(17)
Ph. Colomban
A. Novak
Theoretical interpretations of superionic conduction
457(10)
Proton tunnelling
467(1)
Superionic protonic conductivity
468(2)
References
470(4)
Conduction mechanisms in materials with volatile molecules
474(13)
K.-D. Kreuer
Proton conduction mechanism in dilute acidic aqueous solutions
475(6)
Proton conduction mechanism in concentrated acidic aqueous solutions
481(1)
Proton conduction mechanism in n solid acidic hydrates
481(3)
References
484(3)
V. Devices
487(1)
A. Energy storage and production
487(36)
Applications of perfluorinated proton conductors (Nafions)
487(12)
C. Gavach
G. Pourcelly
Introduction
487(1)
Solid polymer electrolyte (SPE) technology
488(3)
Fuel cells and electrochemically regenerative cells
491(2)
Electrolysers
493(2)
Separation techniques
495(1)
Catalysis
495(1)
Coated electrodes
496(1)
Conclusions
496(1)
References
496(3)
Synthesis of polycrystalline H3O+ and NH4+-β''/β-Al2O3 and potential applications in steam-electrolysis/fuel-cells
499(12)
P.S. Nicholson
Introduction
499(1)
Ion conducting structure of &beta'' - and β-aluminas
499(1)
Synthesis of precursor ceramics
500(2)
Alkali-ion exchange
502(1)
Oxonium and ammoninium ion-exchange
503(3)
Electrolyte characteristics and preliminary steam-electrolysis/fuel-cell calculations and performance
506(2)
Summary
508(1)
References
509(2)
Fuel-cells, steam-electrolysis for hydrogen production and hydrogen separation using high temperature protonic conductors
511(12)
H. Iwahara
Introduction
511(1)
Fuel-cells
511(5)
Steam-electrolysis for hydrogen production
516(3)
Hydrogen separation
519(1)
Other applications
520(2)
References
522(1)
B. Small components and microionic devices
523(50)
Ice-based devices
523(4)
I.A. Ryzhkin
Introduction
523(1)
Screening effects and capacitance devices
523(2)
Devices based on memory effects
525(1)
Field transistors
525(1)
Sensors
525(1)
References
526(1)
Solid-state gas sensors operating at room temperature
527(12)
N. Miura
N. Yamazoe
Introduction
527(3)
Principle of potentiometric sensors
530(2)
New sensing modes
532(2)
Simplification of sensor elements
534(2)
Extension of proton conductor sensors
536(1)
References
537(2)
All solid-state protonic batteries
539(12)
J. Guitton
C. Poinsignon
J.Y. Sanchez
A solid-state battery with a proton conducting electrolyte
539(1)
Advantages and problems of batteries with a liquid proton conducting electrolyte
539(2)
Characteristics of an ideal all solid-state battery
541(1)
The first attempts
542(1)
Recent improvements
543(7)
References
550(1)
Applications of proton conductors in electronchromic devices (ECDs)
551(16)
O. Bohnke
Introduction
551(1)
Structure of electrochromic devices
552(2)
Mixed conductors as electrochromic materials
554(3)
Proton conductors as electrolytes in ECD devices
557(3)
ECD performances
560(3)
Conclusions
563(1)
References
564(3)
Supercapacitors and interfacial charge accumulation devices
567(6)
Ph. Colomban
M. Pham-Thi
Introduction
567(1)
Device fabrication
568(2)
Electrical properties
570(1)
Giant accumulation layer at the Si-HUP interface
570(2)
References
572(1)
Index 573