Atjaunināt sīkdatņu piekrišanu

E-grāmata: Simulation-Driven Design by Knowledge-Based Response Correction Techniques

  • Formāts: PDF+DRM
  • Izdošanas datums: 13-May-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319301150
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-May-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319301150

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient.The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the lo

w-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics.

Introduction.- Simulation-Driven Design.- Fundamentals of Numerical Optimization.- Introduction to Surrogate-Based Modeling and Surrogate-Based Optimization.- Design Optimization Using Response Correction Techniques.- Surrogate-Based Optimization Using Parametric Response Correction.- Non-Parametric Response Correction Techniques.- Expedited Simulation-Driven Optimization Using Adaptively Adjusted Design Specification.- Surrogate-Assisted Design Optimization Using Response Features.- Enhancing Response Correction Techniques by Adjoint Sensitivity.- Multi-Objective Optimization Using Variable-Fidelity Models and Response Correction.- Physics-Base Surrogate Models Using Response Correction.- Summary and Discussion.- References.
1 Introduction
1(6)
2 Simulation-Driven Design
7(8)
2.1 Formulation of the Optimization Problem
7(2)
2.2 Design Challenges
9(6)
3 Fundamentals of Numerical Optimization
15(16)
3.1 Optimization Problem
15(1)
3.2 Gradient-Based Optimization Methods
16(6)
3.2.1 Descent Methods
17(2)
3.2.2 Newton and Quasi-Newton Methods
19(1)
3.2.3 Remarks on Constrained Optimization
20(2)
3.3 Derivative-Free Optimization Methods
22(6)
3.3.1 Pattern Search
23(1)
3.3.2 Nelder-Mead Algorithm
24(1)
3.3.3 Metaheuristics and Global Optimization
24(2)
3.3.4 Particle Swarm Optimization
26(1)
3.3.5 Differential Evolution
27(1)
3.3.6 Other Methods
28(1)
3.4 Summary and Discussion
28(3)
4 Introduction to Surrogate Modeling and Surrogate-Based Optimization
31(32)
4.1 Surrogate-Based Optimization Concept
31(3)
4.2 Surrogate Modeling: Approximation-Based Surrogates
34(11)
4.2.1 Surrogate Modeling Flow
35(1)
4.2.2 Design of Experiments
36(1)
4.2.3 Approximation Techniques
37(8)
4.3 Surrogate Modeling: Physics-Based Surrogates
45(5)
4.4 SBO with Approximation Surrogates
50(7)
4.4.1 Response Surface Methodologies
51(1)
4.4.2 Sequential Approximate Optimization
51(3)
4.4.3 Optimization Using Kriging: Exploration Versus Exploitation
54(1)
4.4.4 Surrogate Management Framework
55(1)
4.4.5 Summary
56(1)
4.5 SBO with Physics-Based Surrogates
57(6)
4.5.1 Space Mapping
57(3)
4.5.2 Approximation Model Management Optimization
60(3)
5 Design Optimization Using Response Correction Techniques
63(12)
5.1 Introduction: Parametric and Non-parametric Response Correction
63(2)
5.2 Function Correction
65(2)
5.3 Low-Fidelity Modeling
67(8)
5.3.1 Principal Properties and Methods
67(1)
5.3.2 Variable-Resolution and Variable-Accuracy Modeling
68(3)
5.3.3 Variable-Fidelity Physics Modeling
71(3)
5.3.4 Practical Issues of Low-Fidelity Model Selection
74(1)
6 Surrogate-Based Optimization Using Parametric Response Correction
75(24)
6.1 Output Space Mapping
75(9)
6.1.1 Output Space Mapping Formulation
76(1)
6.1.2 Output Space Mapping for Microwave Filter Optimization
76(2)
6.1.3 Hydrodynamic Shape Optimization of Axisymmetric Bodies Using OSM
78(6)
6.2 Multi-point Space Mapping
84(5)
6.2.1 Surrogate Model Construction
84(1)
6.2.2 Multi-point SM for Antenna Optimization
85(3)
6.2.3 Multi-point SM for Transonic Airfoil Optimization
88(1)
6.3 Manifold Mapping
89(5)
6.3.1 Surrogate Model Construction
90(2)
6.3.2 Manifold Mapping Optimization of UWB Monopole Antenna
92(1)
6.3.3 Manifold Mapping Optimization of Microstrip Filter
93(1)
6.4 Multi-point Response Correction
94(4)
6.5 Summary and Discussion
98(1)
7 Nonparametric Response Correction Techniques
99(32)
7.1 Adaptive Response Correction
99(17)
7.1.1 ARC Formulation
100(2)
7.1.2 Wideband Bandstop Filter Design with ARC
102(4)
7.1.3 Dielectric Resonator Antenna (DRA) Design with ARC
106(2)
7.1.4 Airfoil Shape Optimization with ARC
108(8)
7.2 Adaptive Response Prediction
116(3)
7.2.1 ARP Formulation
116(2)
7.2.2 Airfoil Shape Optimization with ARP
118(1)
7.3 Shape-Preserving Response Prediction
119(8)
7.3.1 SPRP Formulation
121(1)
7.3.2 Optimization with SPRP: Dual-Band Bandpass Filter
122(1)
7.3.3 Optimization with SPRP: Wideband Microstrip Antenna
123(3)
7.3.4 Optimization with SPRP: Airfoil Design
126(1)
7.4 Summary and Discussion
127(4)
8 Expedited Simulation-Driven Optimization Using Adaptively Adjusted Design Specifications
131(16)
8.1 Adaptively Adjusted Design Specifications: Concept and Formulation
131(3)
8.2 AADS for Design Optimization of Microwave Filters
134(4)
8.2.1 Bandpass Microstrip Filter
134(2)
8.2.2 Third-Order Chebyshev Bandpass Filter
136(2)
8.3 AADS for Design Optimization of Antennas
138(5)
8.3.1 Ultra-Wideband Monopole Antenna
138(2)
8.3.2 Planar Yagi Antenna
140(3)
8.4 AADS for Design Optimization of High-Frequency Transition Structures
143(3)
8.5 Summary and Discussion
146(1)
9 Surrogate-Assisted Design Optimization Using Response Features
147(18)
9.1 Optimization Using Response Features
147(5)
9.2 Feature-Based Tuning of Microwave Filters
152(1)
9.3 Feature-Based Optimization of Antennas
153(4)
9.4 Feature-Based Optimization of Photonic Devices
157(3)
9.5 Limitations and Generalizations
160(3)
9.6 Summary
163(2)
10 Enhancing Response Correction Techniques by Adjoint Sensitivity
165(28)
10.1 Surrogate-Based Modeling and Optimization with Adjoint Sensitivity
165(3)
10.2 Space Mapping with Adjoints
168(11)
10.2.1 SM Surrogate Modeling and Optimization
168(2)
10.2.2 Design Example: UWB Monopole Antenna
170(2)
10.2.3 Design Example: Dielectric Resonator Filter
172(2)
10.2.4 Design Example: Transonic Airfoils
174(5)
10.3 Manifold Mapping with Adjoints
179(5)
10.3.1 MM Surrogate Modeling and Optimization
179(2)
10.3.2 Design Example: UWB Monopole Antenna
181(2)
10.3.3 Design Example: Third-Order Chebyshev Band-Pass Filter
183(1)
10.4 Shape-Preserving Response Prediction with Adjoints
184(5)
10.4.1 SPRP Surrogate Modeling and Optimization
184(3)
10.4.2 Design Example: UWB Monopole Antenna
187(1)
10.4.3 Design Example: Dielectric Resonator Filter
188(1)
10.5 Summary and Discussion
189(4)
11 Multi-objective Optimization Using Variable-Fidelity Models and Response Correction
193(18)
11.1 Multi-objective Optimization Problem Formulation
193(1)
11.2 Multi-objective Optimization Using Variable-Fidelity Models and Pareto Front Refinement
194(6)
11.2.1 Design Space Reduction
195(1)
11.2.2 Surrogate Model Construction and Initial Pareto Set Determination
196(1)
11.2.3 Pareto Set Refinement
196(1)
11.2.4 Design Optimization Flow
197(1)
11.2.5 Case Study: Optimization of UWB Dipole Antenna
197(3)
11.3 Multi-objective Optimization Using Pareto Front Exploration
200(5)
11.3.1 Design Case Study: Compact Rat-Race Coupler
200(1)
11.3.2 Space Mapping Surrogate
201(1)
11.3.3 Multi-objective Optimization Algorithm
202(1)
11.3.4 Results
203(2)
11.4 Multi-objective Optimization Using Multipoint Response Correction
205(5)
11.4.1 Optimization Approach
205(1)
11.4.2 Case Study
206(1)
11.4.3 Numerical Results
207(3)
11.5 Summary
210(1)
12 Physics-Based Surrogate Modeling Using Response Correction
211(34)
12.1 Formulation of the Modeling Problem
211(1)
12.2 Global Modeling Using Multipoint Space Mapping
212(1)
12.3 Mixed Modeling: Space Mapping with a Function Approximation Layer
213(5)
12.3.1 Example: Fourth-Order Ring Resonator Band-Pass Filter
214(2)
12.3.2 Example: Microstrip Band-Pass Filter
216(2)
12.4 Surrogate Modeling Using Multipoint Output Space Mapping
218(3)
12.4.1 Model Formulation
218(2)
12.4.2 Example: Low-Cost Modeling for Robust Design of Transonic Airfoils
220(1)
12.5 Surrogate Modeling with Shape-Preserving Response Prediction
221(12)
12.5.1 Basic SPRP
222(1)
12.5.2 Modified SPRP
223(1)
12.5.3 Generalized SPRP
224(4)
12.5.4 Example: Microwave Filler Modeling
228(2)
12.5.5 Example: Fluid Flow Through a Converging-Diverging Nozzle
230(3)
12.6 Feature-Based Modeling for Statistical Design
233(9)
12.6.1 Yield Estimation Using Response Features
234(5)
12.6.2 Tolerance-Aware Design Optimization Using Response Features
239(3)
12.7 Summary and Discussion
242(3)
13 Summary and Discussion
245(4)
References 249