Atjaunināt sīkdatņu piekrišanu

Simulation-Driven Design by Knowledge-Based Response Correction Techniques Softcover reprint of the original 1st ed. 2016 [Mīkstie vāki]

  • Formāts: Paperback / softback, 262 pages, height x width: 235x155 mm, weight: 4219 g, 93 Illustrations, color; 74 Illustrations, black and white; XI, 262 p. 167 illus., 93 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 27-May-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319807269
  • ISBN-13: 9783319807263
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 262 pages, height x width: 235x155 mm, weight: 4219 g, 93 Illustrations, color; 74 Illustrations, black and white; XI, 262 p. 167 illus., 93 illus. in color., 1 Paperback / softback
  • Izdošanas datums: 27-May-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319807269
  • ISBN-13: 9783319807263
Citas grāmatas par šo tēmu:
Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient.

The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the low-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics.
Introduction.- Simulation-Driven Design.- Fundamentals of Numerical
Optimization.- Introduction to Surrogate-Based Modeling and Surrogate-Based
Optimization.- Design Optimization Using Response Correction Techniques.-
Surrogate-Based Optimization Using Parametric Response Correction.-
Non-Parametric Response Correction Techniques.- Expedited Simulation-Driven
Optimization Using Adaptively Adjusted Design Specification.-
Surrogate-Assisted Design Optimization Using Response Features.- Enhancing
Response Correction Techniques by Adjoint Sensitivity.- Multi-Objective
Optimization Using Variable-Fidelity Models and Response Correction.-
Physics-Base Surrogate Models Using Response Correction.- Summary and
Discussion.- References.