Atjaunināt sīkdatņu piekrišanu

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori [Mīkstie vāki]

  • Formāts: Paperback / softback, 116 pages, height x width: 254x178 mm, weight: 240 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Mar-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470428067
  • ISBN-13: 9781470428068
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 89,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 116 pages, height x width: 254x178 mm, weight: 240 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Mar-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470428067
  • ISBN-13: 9781470428068
Citas grāmatas par šo tēmu:
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative $d$-torus $\mathbb{T}^d_\theta$ (with $\theta$ a skew symmetric real $d\times d$-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincare type inequality for Sobolev spaces.
Chapter 0 Introduction
1(8)
Basic properties
3(1)
Embedding
4(1)
Characterizations
4(2)
Interpolation
6(1)
Multipliers
6(3)
Chapter 1 Preliminaries
9(10)
1.1 Noncommutative Lp-spaces
9(1)
1.2 Quantum tori
10(2)
1.3 Fourier multipliers
12(2)
1.4 Hardy spaces
14(5)
Chapter 2 Sobolev spaces
19(16)
2.1 Distributions on quantum tori
19(2)
2.2 Definitions and basic properties
21(4)
2.3 A Poincare-type inequality
25(3)
2.4 Lipschitz classes
28(3)
2.5 The link with the classical Sobolev spaces
31(4)
Chapter 3 Besov spaces
35(24)
3.1 Definitions and basic properties
35(7)
3.2 A general characterization
42(6)
3.3 The characterizations by Poisson and heat semigroups
48(3)
3.4 The characterization by differences
51(3)
3.5 Limits of Besov norms
54(1)
3.6 The link with the classical Besov spaces
55(4)
Chapter 4 Triebel-Lizorkin spaces
59(24)
4.1 A multiplier theorem
59(9)
4.2 Definitions and basic properties
68(4)
4.3 A general characterization
72(4)
4.4 Concrete characterizations
76(4)
4.5 Operator-valued Triebel-Lizorkin spaces
80(3)
Chapter 5 Interpolation
83(10)
5.1 Interpolation of Besov and Sobolev spaces
83(5)
5.2 The K-functional of (Lp, Wkp)
88(3)
5.3 Interpolation of Triebel-Lizorkin spaces
91(2)
Chapter 6 Embedding
93(10)
6.1 Embedding of Besov spaces
93(2)
6.2 Embedding of Sobolev spaces
95(5)
6.3 Compact embedding
100(3)
Chapter 7 Fourier multiplier
103(10)
7.1 Fourier multipliers on Sobolev spaces
103(4)
7.2 Fourier multipliers on Besov spaces
107(3)
7.3 Fourier multipliers on Triebel-Lizorkin spaces
110(3)
Acknowledgements 113(2)
Bibliography 115
Xiao Xiong, Wuhan University, China, and Universite de Franche-Comte, Besancon, France.

Quanhua Xu, Wuhan University, China, and Universite de Franche-Comte, Besancon, France.

Zhi Yin, Wuhan University, China.