Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural Renovation of Buildings: Methods, Details, and Design Examples, Second Edition

  • Formāts: 600 pages
  • Izdošanas datums: 13-Nov-2020
  • Izdevniecība: McGraw-Hill Education
  • Valoda: eng
  • ISBN-13: 9781260458343
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 104,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 600 pages
  • Izdošanas datums: 13-Nov-2020
  • Izdevniecība: McGraw-Hill Education
  • Valoda: eng
  • ISBN-13: 9781260458343
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Hands-on structural renovation techniques and best practices—thoroughly revised for the latest building codes
 
This fully updated manual explains how to renovate the structure of any building. Up-to-date, comprehensive, and packed with savvy advice drawn from the author's extensive experience, the book makes it easier for building professionals to plan structural improvements—and to handle unforeseen contingencies that arise during construction.
 
The second edition of Structural Renovation of Buildings: Methods, Details, and Design Examples clearly explains the newest methods and materials used for structural repair, strengthening, and seismic rehabilitation. The case studies illustrate the practical applications of the design methods discussed and the best practices that can be used to mitigate the problems that commonly arise during renovation projects. The book:

• Contains practical design methods and problem-solving techniques for structural strengthening and repairs
• Explains the structural provisions of the 2018 International Existing Building Code as well as the latest specialized codes pertaining to steel, concrete, wood, and masonry renovations
• Is written by a renowned structural engineer and experienced author

Preface ix
1 The Challenge of Renovation
1(40)
1.1 Terminology
1(1)
1.2 When to Renovate
2(10)
1.3 Beginning a Renovation Project
12(1)
1.4 Typical Structural Challenges
13(6)
1.5 Role of Building Codes in Renovation
19(2)
1.6 Some Renovation Provisions of Previous Building Codes
21(4)
1.7 The International Existing Building Code: General Issues
25(2)
1.8 IEBC Provisions for Repairs (IEBC
Chapter 4)
27(2)
1.9 IEBC Provisions for Alterations
29(2)
1.10 Change of Occupancy (IEBC
Chapter 10)
31(1)
1.11 Additions (IEBC
Chapter 11)
32(1)
1.12 Design Examples
33(4)
1.13 Renovate or Rebuild?
37(2)
References
39(2)
2 Investigating Existing Conditions
41(48)
2.1 Why Investigate?
41(1)
2.2 Assessing Building Condition
42(9)
2.3 Material Properties in Steel Systems
51(5)
2.4 Concrete Framing
56(10)
2.5 Load Testing of Concrete Structures
66(9)
2.6 Post-Tensioned Concrete Framing
75(1)
2.7 Wood Framing
76(4)
2.8 Masonry
80(3)
2.9 Building Envelope
83(4)
References
87(2)
3 Renovating Steel-Framed Buildings
89(50)
3.1 Steel: The Venerable Material
89(3)
3.2 Past Design Methods and Allowable Stresses for Iron and Steel Beams
92(2)
3.3 Early Iron and Steel Columns
94(6)
3.4 Properties of Early Fasteners
100(3)
3.5 Open-Web Joists
103(4)
3.6 Strengthening Floors and Roofs
107(2)
3.7 Reinforcing Steel Members by Welding
109(16)
3.10 Composite Steel-Concrete Columns
125(1)
3.11 Openings in Existing Steel Beams
126(2)
3.12 Steel Corrosion: Evaluation and Protection
128(3)
3.13 Thermal Prestressing of Steel Structures
131(5)
References
136(3)
4 Strengthening Concrete Buildings
139(60)
4.1 Historical Perspective
139(3)
4.2 Design Methods of the Past
142(6)
4.3 Properties of Old Concrete and Reinforcing Steel
148(1)
4.4 Some Early Proprietary Systems
149(3)
4.5 Strengthening Concrete Beams
152(24)
4.6 Strengthening Structural Slabs
176(7)
4.7 Strengmeriing Concrete Columns
183(7)
4.8 Openings in Existing Slabs
190(6)
References
196(3)
5 Repairing Deteriorated Concrete
199(54)
5.1 Overview
199(2)
5.2 Repairing Cracks
201(9)
5.3 Corrosion of Reinforcement and Its Effects on Concrete
210(9)
5.4 Patching Spalls and Deteriorated Areas
219(12)
5.5 Cathodic Protection and Electrochemical Chloride Extraction
231(2)
5.6 Corrosion Inhibitors
233(1)
5.7 Other Types of Damage to Concrete
234(4)
5.8 Materials for Concrete Repair
238(9)
5.9 Durability of Repairs
247(1)
5.10 Systematic Maintenance Programs
248(1)
References
249(4)
6 Renovating Slabs on Grade
253(50)
6.1 Introduction
253(1)
6.2 Field Investigation
254(2)
6.3 Cracking
256(7)
6.4 Surface Deterioration
263(4)
6.5 Slab Settlement, Heaving, and Curling
267(6)
6.6 Joint Failures
273(4)
6.7 Water Penetration or Emission
277(4)
6.8 Chemical Attack
281(5)
6.9 Slab Replacement
286(2)
6.10 Slab Overlays
288(4)
6.11 Improving Abrasion Resistance
292(4)
6.12 Repair of Deteriorated Overlays, Toppings, and Hardeners
296(2)
References
298(5)
7 Renovating Post-Tensioned Concrete
303(32)
7.1 System Overview
303(2)
7.2 Evolution of Post-Tensioned Structures
305(6)
7.3 Typical Reasons for Repair of Post-Tensioned Buildings
311(1)
7.4 Planning for Repairs
312(3)
7.5 Nondestructive Testing
315(3)
7.6 Destructive Testing
318(1)
7.7 Repair Methods
319(4)
7.8 A Step-by-Step Example: Replacing Post-Tensioned Stressing-End Anchorage
323(10)
References
333(2)
8 Renovating Wood Structures
335(72)
8.1 Historical Background
335(9)
8.2 Wood Deterioration
344(6)
8.3 Detecting Deterioration
350(6)
8.4 Preventing Deterioration
356(4)
8.5 Shrinkage and Defects
360(5)
8.6 Repairing Wood Members
365(9)
8.7 Strengthening Wood Members
374(10)
8.8 Renovating Wood Trusses
384(4)
8.9 Case Study 1: Repairing Termite Damage in Trusses
388(5)
8.10 Case Study 2: Restoring Fire Damage to the Exeter Street Theater
393(9)
References
402(5)
9 Renovating Masonry
407(52)
9.1 Masonry as a Construction Material
407(10)
9.2 Evolution of Masonry Design Methods
417(3)
9.3 Evaluation of Masonry Structures
420(14)
9.4 Masonry Repair
434(8)
9.5 Strengthening Masonry Structural Elements
442(5)
9.6 Repairing Masonry Arches
447(3)
9.7 Other Masonry Renovation Tasks
450(5)
References
455(4)
10 Renovating Metal Building Systems
459(44)
10.1 Introduction
459(3)
10.2 Evolution of Metal Building Systems
462(2)
10.3 Primary Frames
464(6)
10.4 Expansion of Metal Building Systems
470(3)
10.5 Lateral Stability
473(3)
10.6 Secondary Framing
476(2)
10.7 Wall Materials
478(4)
10.8 Metal Roofing
482(9)
10.9 Insulation and Vapor Retarders
491(2)
10.10 Renovation Checklist
493(1)
10.11 Case Study
493(9)
References
502(1)
11 Strengthening Lateral Load-Resisting Systems
503(64)
11.1 Lateral-Load Basics
503(3)
11.2 Lateral Load-Resisting Systems
506(6)
11.3 A Brief History of Wind and Seismic Codes
512(6)
11.4 Code Provisions for Seismic Upgrading
518(8)
11.5 Typical Tasks for Lateral-Load Upgrading
526(2)
11.6 Reinforcing Diaphragms
528(9)
11.7 Reinforcing Wood, Steel, and Masonry Buildings
537(9)
11.8 Reinforcing Concrete Buildings
546(6)
11.9 Energy-Dissipating Devices
552(3)
11.10 Seismic Isolation
555(4)
11.11 Reinforcing Nonstructural Elements
559(4)
References
563(4)
12 Case Studies in Seismic Upgrading
567(52)
12.1 Case 1: Seismic Upgrading of a Former Industrial Building
567(10)
12.2 Case 2: Proposed Renovation of an Unreinforced-Masonry Building
577(18)
12.3 Case 3: Seismic Upgrade of Terminal 1, Oakland International Airport
595(10)
12.4 Case 4: Seismic Retrofit of the Administration Building, San Francisco State University
605(14)
13 Renovating Building Facades
619(68)
13.1 General Issues
619(3)
13.2 Curtain-Wall Problems Caused by Structural Forces and Movements
622(2)
13.3 Water Leakage
624(10)
13.4 Rehabilitating Solid Masonry Walls
634(8)
13.5 Brick-Veneer Walls with CMU Backup
642(6)
13.6 Brick-Veneer Walls with Steel Studs
648(5)
13.7 Repairing Brick-Veneer Walls
653(12)
13.8 Repairing Stone and Stone-Panel Walls
665(8)
13.9 Rehabilitating Exterior Insulation and Finish Systems
673(6)
13.10 Rehabilitating Other Wall Types
679(4)
References
683(4)
Index 687
Alexander Newman, P.E., is principal structural engineer with Maguire Group, Inc., a national architectural, engineering and planning firm, in Foxborough, Massachusetts. With two decades of engineering and management experience, he has worked as project engineer with a consulting engineering firm, design engineer with a light-gage framing panel manufacturer, and manager of fabrication for a steel fabricator. He has planned and supervised structural renovation of numerous buildings throughout the country, including a Boston Edison switching and conversion station that won the 1990 American Consulting Engineering Council of New England Award for Engineering Excellence. Mr. Newman holds an advanced degree in structural engineering from the Moscow Civil Engineering Institute in Russia, and a masters degree in business administration with high honors from Boston University. He is the author of the Bestselling Metal Building Systems, also from McGraw-Hill, and a number of award-winning articles that have appeared in leading engineering publications. Additionally, he conducts continuing-education seminars on metal building systems for design professionals sponsored by the American Society of Civil Engineers and other organizations, and teaches at Northeastern University.